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Abstract: This report describes the Lockheed-Martin VET team efforts and accomplishments 
during the eleventh quarter of the contract. Activity is reported for each of the software 
components of the Training Studio: VIVIDS, Steve, and Vista, as well as domain development 
and evaluation study. This report contains material submitted for subcontracts by Dr. Allen 
Munro at USC/BTL, Dr. Lewis Johnson at USC/ISI. 

Progress on productization of the VET Training Studio software includes increased robustness for 
Vista virtual environment display and interaction services, a new capability to use the STEVE 
visual representation within VIVIDS, and improved visual and spoken dialog capabilities for 
STEVE. 

The views and conclusions contained in this document are those of the 
authors and should not be interpreted as representing the official policies, 

either expressed or implied, of the Office of Naval Research or any other part 
of the U.S. Government. 
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1    Summary 
This report describes efforts for 
productization of the Training Studio 
software for the Virtual Environments for 
Training contract during the period from 
April 1- June 30,1998. 

The Lockheed Martin Advanced Technology 
Center oversaw productization for itself and 
subcontractors, releasing       several 
improvements to Vista for speeding up 3D 
text display and modification, and selective 
loading of inlined 3D models. As part of 
productization, standalone Performer VRML 
libraries were updated for eventual release 
to our subcontractors and select government 
agencies. 

At Behavioral Technology, research and 
development during this quarter has 
included efforts in the following areas: 

• Student interface improvements. 

• Additional improvements in the 
integration of a VET-featured 
VIVIDS with the other VET 
components, including Vista, 
autonomous agents, TrishTalk, and 
the VET sound server. 

• Improved participant handling in 
VIVIDS instruction. 

• Allowing the instruction author to 
use a 'directable' Steve for certain 
types of instructional remediation 
within VIVIDS structured lessons. 

During this quarter, ISI continued research 
and development on their pedagogical agent, 
Steve, greatly improving visual and spokent 
dialog with the student. In addition, Ben 
Moore continued improving the speech 
recognition component that allows people to 
communicate with agents in the virtual 
environment, making a release of this Java- 
based interface, RecApple, just prior to our 
July 9 ONR demo in Arlington, VA. 

2    Introduction 
This report describes the efforts of Lockheed 
Martin, USC/ISI, and USC/BTL for the 
Virtual Environments for Training contract 
during the period from April 1 - June 30,1998. 
The purpose of our work is to explore, 
develop, and evaluate novel techniques for 
incorporating automated individual and 
team instruction in virtual environments. 

The ATC team extended the Vista Viewer 
capabilities for human-computer interaction 
in a networked, real-time immersive training 
environment, continued work to optimize the 
Vista software, and supported the 
development requirements of USC colleagues 
at     ISI     and    BTL. Efforts     toward 
productization of the Training Studio were 
increased during this period. 

The Lockheed Martin team members for the 
VET project are: Randy Stiles (Program 
Manager), Sandeep Tewari, Mihir Mehta, 
and Laurie McCarthy. 

At ISI, the STEVE pedagogical agent visual 
and spoken dialog capabilities have been 
improved. Steve is now much more responsive 
to the student. To achieve this, the building 
blocks for Steve's dialogue have been 
decomponsed into smaller pieces. This 
decomposition allows Steve to respond to 
interruptions — including changes in the 
virtual world as well as interruptions from 
the student — more frequently. 

During the second quarter of 1998 the 
USC/ISI team consisted of the following 
individuals: Dr. Lewis Johnson (principal 
investigator), Dr. Jeff Rickel (research 
scientist), Mr. Marcus Thiebaux 
(programmer). The project was also assisted 
by Richard Angros (a graduate student), Ben 
Moore, and Anna Romero (undergraduate 
students), all working on the AASERT grant 
associated with the VET project. Romero 
stopped working on the project in May, and 
Moore returned to the project in late May 

The authoring system for building simulation 
behaviors and structured tutorials for virtual 
environments  is   called   VIVIDS   (Virtual 
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Interactive Intelligent Tutoring System 
Development Shell). During this quarter of 
the contract productization efforts have been 
undertaken to ensure the robustness, 
completeness, and the openness of the 
authoring and delivery system and of the 
Gas Turbine Engine simulation constructed 
using VIVIDS. 

During the second year of this project, the 
USC/BTL team for the VET project consisted 
of the following individuals: Dr. Allen 
Munro (Principal Investigator), Dr. Quentin 
Pizzini, and David Feldon. 

3    Methods, Assumptions & 
Procedures 

We have been conducting a number of 
research investigations, each of which is 
directed at one or more of the objectives 
mentioned in the introduction. For each of 
the three system components, one or more 
members of the primary research team, in 
collaboration conduct these investigations 
with the other VET project participants. 

3.1    Advanced Technology Center 
The research effort at the ATC has operated 
on several hypothesis; 1) a component-based 
virtual environment architecture can support 
the integration of pedagogical agents and 
simulation-based training 2) immersed, 
networked interaction with 3D (VRML) 
models can be isolated to the virtual 
environment interaction component (Vista) 
3) instructional interaction in a virtual 
environment can- be specific to each 
participant, supporting team training and 
still accomplishing individual remediation. 

The ATC approach focuses on providing 
those capabilities that accomplish 
communications and scene display and 
manipulation for Steve and VIVIDS, as well 
as optimizing human interactions within the 
virtual environment. New capabilities are 
developed, tested, and released in a fast 
cycle to collaborating VET organizations for 
further evaluation and critique. Other 
capabilities are developed in response to a 
direct request by one of the other team 
members; or provided  as a   solution to  a 

problem encountered by one of the 
collaborators. 

3.2 Information Sciences Institute 

USC/ISI's focus has been on incorporating 
pedagogical capabilities in an intelligent 
agent architecture called Steve. We are 
investigating the following hypotheses: 1) 
that an agent architecture and knowledge 
representation can be developed that permits 
autonomous agents to act as guides, mentors, 
and team members, 2) that machine learning 
and high level languages can be employed to 
assist instruction developers in creating 
agent-based instruction, and 3) virtual 
environment technology enables new types of 
interactions between trainees and 
instructional systems, which improve the 
quality of instruction provided by the 
instructional systems. 

USC/ISI research methodology is as follows. 
We identify a new capability that, if 
incorporated into Steve, would contribute to 
validating one of our research hypotheses. 
We then design a set of extensions to the 
Steve system that implements the 
capability. We develop a prototype 
implementation of the capability, and 
conduct a series of demonstrations and irt- 
house tests. We then make arrangements for 
further evaluation of the capabilities by our 
partner organizations or ourselves. 

3.3 Behavioral Technology 
Laboratory 

The VET research effort at Behavioral 
Technology Laboratory (USC), previously 
demonstrated the correctness of the 
hypothesis that the 2D behavior authoring 
interface of RIDES can be adapted and 
extended to provide an effective and natural 
way to specify simulations for virtual 
environment    training. The     VIVIDS 
authoring system constitutes the first system 
for authoring (as opposed to programming) 
robust complex interactive simulations for 
virtual environments. Furthermore, these 
authored simulations have features that 
support the near-automatic construction of 
certain types of structured tutorials. The 
combination of productive simulation 
authoring       with        efficient        tutorial 
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development is designed to make feasible 
the application of virtual environment 
technologies to a very wide range of 
technical training requirements at reasonable 
cost. Extensions to the original VIVIDS 
system permit several levels of collaboration 
with agents and support team training in 
virtual environments. 

USC/BTL methodology has been to 
progressively adapt VIVIDS functionalities 
to provide appropriate simulation and 
instruction services for a virtual environment 
delivered by Vista, to provide services to the 
Steve autonomous agent, and to exploit 
appropriately the speech (TrishTalk) and 
sound capabilities of the VET environment. 
Developing large simulations and instruction 
materials using the revised authoring tools 
tests these new capabilities. Two levels of 
formative evaluation are pursued: both the 
usability of the revised authoring system 
and the functionality of the tutorials it 
produces must be examined. Based on, first, 
in-house evaluations, and, after initial 
revisions, the evaluations of our research 
partners at Lockheed Martin, at USC's 
Information Sciences Institute, and at the 
U.S. Air Force Laboratory, further 
modifications are made, and the tool- 
development, authoring and testing cycle 
resumes. 

4    Results and Discussion 

This section covers the results accomplished 
during this reporting period and discusses the 
significance of this work in terms of the VET 
project goals as well as contributions to 
respective research communities at large. 

4.1    Software Development 

Lockheed Martin, USC/BTL, and USC/ISI 
each accomplished major milestones 
regarding development of their respective 
components: Vista Viewer, VIVIDS, and 
Steve. 

4.1.1    Simulation-based Training 

This section describes the research and 
development efforts with respect to the 
VIVIDS component. Vivids changes were 
focused on: improvements in the integration 

of a VET-featured VIVIDS with the other 
VET components, enhancing the Gas Turbine 
Engine (GTE) control system simulation, 
improving the immersed student interface, 
and 'productizing' the prototype VIVIDS for 
improved operation in VET systems. 

4.1.1.1 Student Interface Improvements 
The graphical user interface that supports 
student commands in VET during VIVIDS 
instruction was significantly improved. 
Contributing developments include the 
addition of clear text labels rather than 
obscure icons, and new instructional 
commands: Jump to viewpoint and Repeat 
last utterance 

Previously, the instructional command 
interface was composed of an opaque palette 
with three icons, the meanings of which 
were not always clear to students. The same 
icon had different meanings depending on the 
instructional mode being used. When a 
structured lesson was being presented, for 
example, a question-mark icon meant, "I 
don't know the answer. Show me." When the 
student was engaged in the free- 
play/browsing mode, however, the question- 
mark icon meant, "I'm about to touch an object 
for which I'd like to see available textual 
information." Using text labels on the 
palette for the available commands 
eliminated these sources of confusion. 

New instructional commands were added to 
the palette, including "Change Viewpoint" 
(jump to the next viewpoint in a previously 
authored list of viewpoints) and "Repeat 
Text" (repeat the last thing that was said 
using the VET speech output system). 

4.1.1.2 Improved Component Integration 
VIVIDS now collaborates more effectively 
with Vista, Steve, TrishTalk, and the sound 
server, by actively tracking their presence in 
the instructional environment. VIVIDS is 
aware of the Activity State of these 
components and maintains an internal 
representation of the active components in 
the VET instructional environment. If, for 
example, TrishTalk were not present, the old 
VIVIDS could hang indefinitely while 
waiting for a signal that Trish had finished 
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speaking an instructional utterance that 
VIVIDS had sent to it. This kind of problem 
can now be avoided for any case in which a 
collaborating component exits normally. 
When a particular component (such as the 
speech server) is absent, VIVIDS does not 
attempt to access that component. (Of course, 
if a collaborating component crashes, 
VIVIDS is not aware of its absence.) 

4.1.1.3 Improved Participant Handling. 
VIVIDS now automatically retrieves 
participant names from system information. 
In previous releases, it was necessary to enter 
the names of the participants in a team 
training exercise into each computer. 

4.1.1.4 Using Steve to Enhance VIVIDS 
Instruction 

VIVIDS can now exploit the Soar- 
independent Steve provided by our 
colleagues at ISI. This makes possible a new 
mode of instruction that can take advantage 
of the visual cues provided by using a 
graphically embodied agent in the rapidly 
authorable structured exercises that can be 
created with VIVIDS. Authors can specify 
that certain instructional items can make use 
of Steve for presentations or for 
remediations. The VIVIDS instructional 
item types that support the optional use of 
Steve are: 

• Highlight Item. When Steve is used 
to highlight an item, he moves to 
the item and points at it with his 
right hand. 

• Control Item - Remediation. When a 
student fails to perform a required 
control manipulation, VIVIDS can 
now demonstrate the correct action 
by having Steve move to the control 
and carry out the action, using his 
left hand. 

• Indicator Item - Remediation. If a 
student fails to make an indicator 
observation correctly, authors can 
specify a remediation in which 
Steve moves to the indicator, points 
to it, and tells the student what 
value it displays. 

• Goal Item - Remediation. When 
goals are not achieved, authors can 

use Steve to carry out a set of actions 
that achieves the goal, and they can 
have Steve point out those aspects of 
the new situation that indicate that 
the goal has been achieved. 

Steve can also be made to follow a path from 
one object to another without passing through 
walls. Sample training materials (lessons) 
were developed in the content of the Gas 
Turbine Engine simulation to test the 
automatic use of the 'directable' Steve in 
VIVIDS structured lessons. 

4.1.2    Pedagogical Agent Development 

This section relates improvements to 
capabilities of the Steve Pedagogical Agent 
in the use of dialog-centered speech, motor 
control in a complex graphical setting, 
Stevels graphical representation, and task 
authoring. It also relates ISI efforts in 
developing a sound server. 

4.1.2.1   Dialogue 
During this quarter, Rickel made significant 
improvements in Steve's dialogue 
capabilities, enhancing the timing and 
completeness of visual and spoken dialog 
with the student. 

Steve is now much more responsive to the 
student. To achieve this, Rickel decomposed 
the building blocks for Steve's dialogue into 
smaller pieces. This decomposition allows 
Steve to respond to interruptions — including 
changes in the virtual world as well as 
interruptions from the student — more 
frequently. 

Steve's ability to take turns during a 
dialogue has been improved: 1) after telling 
or showing the student something, Steve now 
looks at the student and pauses (to give the 
student an opening) before continuing, and 2) 
Steve now recognizes when a student begins 
speaking and looks at the student while 
listening until the speech is complete. 
Previously, Steve could only detect when the 
student finished saying something. 

Steve's dialogue capabilities are more robust 
than before: he now tries to respond to all 
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requests and questions, even if they come at 
unusual times. 

Steve's text generation has been improved: 
his answers to questions are less terse than 
before. 

Moore improved Steve's use of intonation: 
after some experimentation, we were able to 
make his intonation and spoken emphasis 
sound much more natural by raising the upper 
limit on his pitch range. Moore is also 
studying other ways of improving Steve's 
prosody. 

Rickel is supervising a Master's student this 
summer, Sung-Oh Jung, who is investigating 
the addition of plan recognition capabilities 
to Steve. If Steve had a better ability to 
assess the student's current intentions and 
plans, he could better tailor his suggestions 
and feedback. (Sung-Oh is not currently 
receiving any financial support for his work.) 

We view Steve's dialogue capabilities as a 
crucial area for future research, and will be 
continuing work in this area under the VET 
AASERT grant. 

4.1.2.2   Motor Control 

During this quarter, we also improved 
Steve's motor control capabilities. 

Thiebaux added arms to Steve's body and 
designed and implemented the animation 
primitives for the arms. These animation 
primitives are simpler and more efficient 
than approaches based on inverse 
kinematics, yet they are very robust and 
effective, providing very natural-looking 
motion for our purposes. He also added 
hands with more degrees of freedom and 
smoother animation than our old approach. 
Rickel integrated these new body parts into 
Steve's motor control module. The result is a 
much more natural-looking virtual human. 
Response from everyone who has seen the 
new body has been very positive. 

Rickel and Thiebaux extended Steve so that 
he now attaches himself to his student's 
display when he first comes up and when he 
is monitoring the student. This allows him to 

follow the student around. This technique 
was previously used with the old Inventor 
body, but hadn't been possible with the new 
VRML body until now. Also, unlike the old 
Inventor body, Steve can now look around 
when attached to the student's display. 

As her senior project under the supervision of 
Rickel, Anna Romero completed a web-based 
interface for experimenting with Steve's 
facial expressions. The interface allows 
people to create new facial expressions by 
using sliders to manipulate Steve's eyes, 
eyelids, eyebrows, and lips, and she also 
created a set of expressions covering a range 
of different emotions that could be useful in a 
tutorial context. Although these expressions 
have not yet been integrated into Steve's 
tutorial behavior, Anna's work lays the 
foundation for such extensions. 

Marcus Thiebaux has packaged up and 
documented his code for providing human 
figure animation in Vista. This code provides 
low-level animation primitives for 
controlling Steve's body. Currently, the code 
is driven by Steve's motor control module. 
However, by making this code available to 
our other VET partners, they can make use of 
Steve-like agents for their own purposes. In 
particular, Pizzini of BTL is adding code to 
allow VIVIDS to control a Steve-like agent 
to guide the student around during 
familiarization lessons. Although their 
agent will not be as intelligent or reactive as 
Steve, they feel that this approach will be 
more effective than their previous methods 
for guiding the student and highlighting 
objects. 

4.1.2.3   Preparing for Field Use 

As the VET project draws to a close, our focus 
has shifted towards making Steve robust 
enough for eventual field use at the end of 
the project. We continued our progress in that 
direction this quarter. Rickel has focused on 
testing Steve under a wide range of 
conditions, and has made some performance 
optimizations. Thiebaux has also been 
making performance optimizations on his 
code to control the animation of Steve's body. 
We have run some informal evaluations to 
assess usability  issues, and we expect  to 
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continue such experiments. To our 
documentation on how to use Steve, Rickel 
added documentation on authoring Steve. 
Angros completed a tutorial on how to author 
Steve by demonstration, and he is designing 
an evaluation of his dissertation work. 
Finally, Rickel made releases of Steve, the 
graphical models for Steve, and TrishTalk 
(the text-to-speech component) to all our 
VET partners. We expect to make one more 
release of Steve during the next quarter; that 
will serve as the final release under VET 
funding, and any subsequent releases will be 
based on the work of students under VET 
AASERT funding. 

4.1.2.4   Domain Development 

Our work on domain development is winding 
down, but we did perform some work in that 
area during this quarter. We spent 
significant time testing Steve in both the 
HPAC and GTE environments, including 
working with students on individual tasks 
and with students and agents on team tasks. 
We made some improvements to Steve based 
on this testing, and we also extended Steve's 
domain knowledge in some places, notably 
his knowledge of where to stand relative to 
particular objects and some of his text strings 
for describing task steps. 

4.1.3    Virtual Environment Interaction 

Virtual environment interaction, where 3D 
scenes and objects are displayed and used in 
real-time, is the ATC's primary technical 
area. The interaction capability is realized 
in the Vista software component. During 
this quarter, Vista development centered on 
fleshing out text display and library support 
for agent optimization. 

4.1.3.1   External Library Functions 

Two new external library functions were 
developed for USC/ISI colleagues to use/test 
for controlling VRML models and to speed up 
agent rendering. The first of these is a 
selective inline capability that can be used 
to add to a VRML scene. The second is a new 
node name lookup that more efficiently finds 
node pointers used during figure animation. 

4.1.3.2 Dynamic 3D Text 

Vista development included improved 
dynamic 3D text capabilities, including new 
support for the VRML text node, resulting 
from an example from colleagues at Brooks 
Air Force Base as well as Tewari's work on 
elimination of        multiple pfFont 
initializations. The improved speed for 
changing text allowed significantly faster 
rendering of text menus. 

4.1.3.3 GTE Model 

During this quarter, a new version of the GTE 
models was released. The updated model 
provided invisible waypoint objects which to 
allow Steve to travel while near the pipes in 
the engine room. Also included were 
proximity sensors that control viewpoint 
snapping turned off, so that you can fly 
outside or above of the engine room and 
central control station without getting 
popped back to a reference location. This is 
useful to see from above, or pulling a little 
further out, switching off a lot of geometry to 
test the update rate for multiple Steve agent 
visual representations. 

4.1.3.4 Profiler 

As part of the productization task, 
modification to the Profiler was begun to 
allow all Training Studio processes to be 
controlled from one central interface. As part 
of this effort, Vista's response to TScript 
vrStop was modified. Now, vrStop must be 
qualified by participant to stop Vista; i.e., 
vrStop all will stop everything, but vrStop 
vista <participant> will only stop the Vista 
that user/student <participant> is using, 
while vrStop vista all will stop all Vistas. 

4.1.4    Productization Efforts 

As discussed in the last report, 
productization is a major task during Option 
2 of the VET contract and underlies the 
design and development of the system 
extensions during this last phase. This 
quarter saw continued development and 
refinement of interfaces to each of Vista, 
VIVIDS, and Steve components for 
authoring. These efforts are described in the 
separate descriptions of each component in 
sections 4.1.1 - 4.1.3 of this report. Component 
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documentation has been collected and 
organized into a draft reference manual. 
This documentation will be reviewed and 
revised by all team members at a planning 
meeting scheduled for July/early August. 
The final version of the manual will provide 
both the descriptions and instructions of 
Training Studio use and operations. 

4.2 Meetings 
In preparation for our July 9 demo to ONR in 
Washington DC, Randy Stiles of the LM 
ATC met with Ben Moore of USC/ISI to 
prepare the Maximum Impact for use 
standalone at ONR, test a new revision of 
the Java-based speech recognition interface 
RecAppl, and test the standalone network 
configuration of 3 workstations for the demo. 

4.3 Presentations and Publications 
McCarthy presented Enabling Team Training 
in Virtual Environments at the 
Collaborative Virtual Environments (CVE) 
98 conference in Manchester, UK. The paper 
was the result of collaboration with Stiles, 
Johnson, and Rickel. The presentation 
included an updated video of our most recent 
developments. The authors have been 
invited to extend the paper for journal 
publication in a special issue of the Virtual 
Reality: Research, Developments and 
Applications. 

Steve was featured in several papers and 
presentations during this quarter. Rickel and 
Johnson revised and submitted the final 
version of their, paper for the journal 
Applied Artificial Intelligence (included 
with this report). Rickel and Johnson revised 
and submitted the final version of their 
paper for the AAAI workshop on Multi- 
Modal Human-Computer Interaction. 

Steve was featured in a survey paper by 
Elliott and Brzezinski in AI Magazine 19(2). 
Rickel and Johnson submitted a paper to the 
ITS '98 Workshop on Pedagogical Agents. 
(Both Rickel and Johnson are on the program 
committee.) Rickel and Johnson submitted a 
paper to the First Workshop on Embodied 
Conversational Characters. 

Johnson gave a talk at the Second 
International Conference on Autonomous 
Agents. Johnson gave an invited talk at the 
International Workshop on Interaction 
Agents in LAquila, Italy. Rickel gave an 
invited talk at the Virtual Humans 3 
conference. Rickel gave a talk at USC's 
Center for Scholarly Technology. Both 
Johnson and Angros gave talks at the Soar 
Workshop. 

5    Conclusions 
Progress continued over the 11th quarter with 
special emphasis on productization of the 
system. Development of authoring tools is 
important during this phase and efforts in 
this area are underway for each Training 
Studio component. Final documentation and 
manuals are being developed and the video 
produced July 1997 has been updated with 
research results through March 1998. A final 
updated video is being planned. 

The next quarter will complete the 
development effort on the Training Studio. 
Demonstration of the system to date will be 
presented at ONR in July. The ATC focus is 
on ensuring smooth closure and completion of 
contract deliverables. Plans for closure will 
be made during a development team meeting 
to be held in the upcoming quarter. 

During the next quarter, ISI plans to complete 
work under the VET grant and continue 
research via students under AASERT funding. 
ISIÄs main focus under the VET funding will 
be to support a demo at ONR on July 9, make 
a final release of all VET software, and 
complete documentation and final report. In 
addition, Rickel will give an invited talk in 
London at the Virtual Reality for Education 
and Training conference in July, and will 
demo Steve at AAAI later that month. 
Under AASERT funds, USC/ISI will continue 
research and development on pedagogical 
agents for training in virtual reality through 
their students Ben Moore, Richard Angros, 
and our new Ph.D. student, Taylor Raines. 

In the coming quarter, USC/BTL efforts on 
the VET project will be completed. Ongoing 
VIVIDS instruction enhancements will be 
tested in the context of the VET Gas Turbine 
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Engine    control    systems    trainer. In 
collaboration with colleagues at ISI and at 
Lockheed Martin, we will contribute to a 
Final Report on the VET project. 

During the next quarter, the ATC will 
oversee the packaging of the Training Studio 
components, drafting of a user's guide, final 
report, and summary video, as well as 
exploration of transition opportunities. 
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Symbols, Abbreviations & 
Acronyms 

AAAI 

AASERT 

AFHRL 

ATC 

BTL 

COTR 

DIS 

GTE 

HPAC 

ICAI 

IPEM 

ISI 

ITS 

American Association for Artificial 
Intelligence 
ONR Grant for graduate student 
development at USC/BTL and 
USC/ISI associated with VET 
contract 
U.S. Air Force Human Resources 
Laboratory 
Advanced Technology Center, located 
In Palo Alto, CA, part of Lockheed 
martin Missiles & Space 
Behavioral Technologies 
Laboratories, located in Redondo 
Beach, CA, a performing organization 
in the Lockheed Martin VET effort, a 
laboratory of the University of 
Southern California. 
Contracting Office Technical 
Representative. The Program Manager 
or Program Officer from the funding 
agency who provides technical 
direction for the program. 
Distributed Interactive Simulation, a 
real-time distributed message protocol 
used in training and operational 
simulations developed by ARPA and 
now an International Standards 
Organization standard. 
Gas Turbine Engine - similar to jet 
engine, which drives propulsion of a 
Navy Ship. In our case we are usually 
referring to the LM2500 Gas Turbine 
Engine on USS Arleigh Burke (DDG- 
51) ships. 
High Pressure Air Compressor, an oil- 
free air compressing system prevalent 
on many navy vessels, which prepares 
compressed air for gas turbine engines. 
Intelligent Computer Aided Instruction, 
a method of instruction whereby an 
intelligent model of a student's 
understanding is used to guide a 
student during instruction using a 
computer. 
Integrated Planning, Execution and 
Monitoring architecture for 
coordinating different planning 
strategies as required for SOAR 
activities. 
Information Sciences Institute in 
Marina del Rey, CA, a performing 
organization in the Lockheed Martin 
VET effort, affiliated with the 
University of Southern California in 
Los Angeles, CA. 
Intelligent Tutoring Systems O an AI 
approach where the student, domain, 
and instructional techniques are 
modeled and used to actively instruct 
the student 
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SIGART 

SGI 

SOAR 

STEVE 

Tcl/Tk 

TScript 

URL 

use 
VE 

VET 

VR 

VRIDES 

VIVIDS 
VRML 

WWW 

Multi-Channel   Option   for    Silicon 
Graphics    Onyx    Workstations,    a 
necessary option to provide separate 
video  channels   used   in   immersive 
virtual environment displays. 
Office of Naval Research, the funding 
agency for the VET effort. 
Rapid Instructional Development for 
Educational Simulation 
Special Interest Group on Artificial 
Intelligence 
Silicon    Graphics    Incorporated,    a 
workstation company whose  whole 
culture   centers    around    fast    3D 
graphics. 
A   platform   independent,   cognitive 
architecture based on a   production 
system which seeks to address those 
capabilities   required   of   a   general 
intelligent agent. 
SOAR Training  Expert   for   Virtual 
Environments 
A     windowing     interface      toolkit 
assembled around a UNIX-shell like 
interpreter originally developed at UC 
Berkeley. 
Training Script message protocol for 
virtual environments 
Uniform resource locator, a tag that 
indicates a media format and location 
on the Internet as part of the World 
Wide Web. 
The University of Southern California. 
Virtual   Environment,  a   3D   visual 
display and accompanying simulation 
which  represent some aspect of  an 
environment. Expanded forms of VE 
also  address  other  senses  such as 
audio, touch, etc. 
Virtual Environments for Training, a 
Defense Department focused research 
initiative   concerned   with   applying 
virtual   environment   technology   to 
training 
Virtual      Reality       see       Virtual 
Environment 
Virtual Rapid Instructional 
Development        for Educational 
Simulation. A special version of the 
RIDES program for use in developing 
simulations     and     tutorials      that 
collaborate with Vista  Viewer  and 
Soar  to deliver training   in  virtual 
environments. 
See VRIDES above 
Virtual Reality Modeling Language, an 
analog to HTML used for documents, 
but focused on 3D objects and scenes 
for the World Wide Web. 
World-Wide      Web,      a       system 
incorporating    the    HTTP    message 
protocol   and  the  HTML   document 
description   language   that    allows 
global hypertext over the Internet. 
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Abstract 

This paper describes Steve, an animated agent that helps students learn to per- 
form physical, procedural tasks. The student and Steve cohabit a three-dimensional, 
simulated mock-up of the student's work environment. Steve can demonstrate how to 
perform tasks and can also monitor students while they practice tasks, providing as- 
sistance when needed. This paper describes Steve's architecture in detail, including 
perception, cognition, and motor control. The perception module monitors the state of 
the virtual world, maintains a coherent representation of it, and provides this informa- 
tion to the cognition and motor control modules. The cognition module interprets its 
perceptual input, chooses appropriate goals, constructs and executes plans to achieve 
those goals, and sends out motor commands. The motor control module implements 
these motor commands, controlling Steve's voice, locomotion, gaze, and gestures, and 
allowing Steve to manipulate objects in the virtual world. 

1    Introduction 

To master complex tasks, such as operating complicated machinery, people need hands-on 
experience facing a wide range of situations. They also need a mentor that can demon- 
strate procedures, answer questions, and monitor their performance, and they may need 
teammates if their task requires multiple people. Since it is often impractical to provide 
such training on real equipment, we are exploring the use of virtual reality instead; training 
takes place in a three-dimensional, interactive, simulated mock-up of the student's work 
environment. Since mentors and teammates are often unavailable when the student needs 
them, we are developing an autonomous, animated agent that can play these roles. The 
agent's name is Steve (Soar Training Expert for Virtual Environments). 

Steve integrates methods from three primary research areas: intelligent tutoring sys- 
tems, computer graphics, and agent architectures. This novel combination results in a 
unique set of capabilities. Steve has many pedagogical capabilities one would expect of an 
intelligent tutoring system. For example, he can answer questions such as "What should 
I do next?" and "Why?". However, because he has an animated body, and cohabits the 
virtual world with students, he can provide more human-like assistance than previous dis- 
embodied tutors. For example, he can demonstrate actions, use gaze and gestures to direct 



the student's attention, and guide the student around the virtual world. Virtual reality is an 
important application area for artificial intelligence because it allows more human-like in- 
teractions among synthetic agents and humans than desktop interfaces can. Finally, Steve's 
agent architecture allows him to robustly handle a dynamic virtual world, potentially pop- 
ulated with people and other agents; he continually monitors the state of the virtual world, 
always maintaining a plan for completing his current task, and revising the plan to handle 
unexpected events. 

Steve consists of a set of domain-independent capabilities that utilize a declarative rep- 
resentation of domain knowledge. To teach students about the tasks in a new domain, 
someone must provide the appropriate domain knowledge. We assume that this person will 
be a course author, a person with enough domain knowledge to create a course for teaching 
others. Importantly, we do not assume that this person has any programming skills. Ensur- 
ing that Steve only relies on types of knowledge that a course author can provide imposes 
strong constraints on Steve's design. 

Steve is designed to coexist with other people and agents in a virtual world. Our goal is 
to support team training, whöre teams of people, possibly at different locations, can inhabit 
the same virtual world and learn to perform tasks as a team. Agents like Steve can play 
two roles in such training: they can serve as tutors for individual team members, and they 
can play the role of missing team members. We have recently extended Steve to understand 
team tasks and function as a team member. We will not address those issues in this paper; 
here, we focus primarily on Steve's ability to work with a single student on a one-person 
task. However, as will become clear, ensuring that Steve can function in an environment 
with other people and agents has placed important constraints on Steve's design. 

This paper describes Steve's architecture in detail, including perception, cognition, and 
motor control. First, Section 2 illustrates Steve's capabilities via an example of Steve and 
a student working together on a task. Next, as background, Section 3 briefly describes 
the larger software architecture for virtual worlds of which Steve is a part; more detail is 
available in an earlier paper (Johnson et al. 1998). Finally, Section 4 gives an overview of 
Steve's architecture, and the remainder of the paper provides the details. 

2    Steve's Capabilities 

To illustrate Steve's capabilities, suppose Steve is demonstrating how to inspect a high- 
pressure air compressor aboard a ship. The student's head-mounted display gives her a 
three-dimensional view of her shipboard surroundings, which include the compressor in 
front of her and Steve at her side. As she moves or turns her head, her view changes 
accordingly. Her head-mounted display is equipped with a microphone to allow her to 
speak to Steve. 

After introducing the task, Steve begins the demonstration. "I will now check the oil 
level," Steve says, and he moves over to the dipstick. Steve looks down at the dipstick, 
points at it, looks back at the student, and says "First, pull out the dipstick." Steve pulls 
it out (see Figure 1). Pointing at the level indicator, Steve says "Now we can check the oil 
level on the dipstick. As you can see, the oil level is normal." To finish the subtask, Steve 
says "Next, insert the dipstick" and he pushes it back in. 

Continuing the demonstration, Steve says "Make sure all the cut-out valves are open." 
Looking at the cut-out valves, Steve sees that all of them are already open except one. 
Pointing to it, he says "Open cut-out valve three," and he opens it. 



Figure 1: Steve pulling out a dipstick 



Figure 2: Steve describing a power light 

Next, Steve says "I will now perform a functional test of the drain alarm light. First, 
check that the drain monitor is on. As you can see, the power light is illuminated, so 
the monitor is on" (see Figure 2). The student, realizing that she has seen this procedure 
before, says "Let me finish." Steve acknowledges that she can finish the task, and he shifts 
to monitoring her performance. 

The student steps forward to the relevant part of the compressor, but is unsure of what 
to do first. "What should I do next?" she asks. Steve replies "I suggest that you press 
the function test button." The student asks "Why?" Steve replies "That action is relevant 
because we want the drain monitor in test mode." The student, wondering why the drain 
monitor should be in test mode, asks "Why?" again. Steve replies "That goal is relevant 
because it will allow us to check the alarm light." Finally, the student understands, but she 
is unsure which button is the function test button. "Show me how to do it" she requests. 
Steve moves to the function test button and pushes it (see Figure 3). The alarm light comes 
on, indicating to Steve and the student that it is functioning properly. Now the student 
recalls that she must extinguish the alarm light, but she pushes the wrong button, causing 



Figure 3: Steve pressing a button 

a different alarm light to illuminate. Flustered, she asks Steve "What should I do next?" 
Steve responds "I suggest that you press the reset button on the temperature monitor." 
She presses the reset button to extinguish the second alarm light, then presses the correct 
button to extinguish the first alarm light. Steve looks at her and says "That completes the 
task. Any questions?" 

The student only has one question. She asks Steve why he opened the cut-out valve.1 

"That action was relevant because I wanted to dampen oscillation of the stage three gauge" 
he replies. 

This example illustrates a number of Steve's capabilities. He can generate and recog- 
nize speech, demonstrate actions, use gaze and gestures, answer questions, adapt domain 
procedures to unexpected events, and remember past actions. The remainder of the paper 
describes the technical details behind these capabilities. 

'Such after-action review questions are posed via a desktop menu, not speech. Steve generates menu items 
for all the actions he performed, and the student simply selects one. A speech interface for after-action review 
would require more sophisticated speech understanding. 



Human Interface 

Figure 4: An architecture for virtual worlds. Although the figure only shows components 
for one agent and one human, other agents and humans can be added by simply connecting 
them to the message dispatcher in the same way. 

3    Creating Virtual Worlds for People and Agents 

Before we can discuss Steve's architecture, we must introduce a software architecture for 
creating virtual worlds that people and agents can cohabit. With our colleagues from 
Lockheed Martin Corporation and the USC Behavioral Technologies Laboratory, we have 
designed and implemented such an architecture (Johnson et al. 1998). For purposes of mod- 
ularity and efficiency, the architecture consists of separate components running in parallel 
as separate processes, possibly on different machines. The components communicate by 
exchanging messages. Our current architecture includes the following types of components: 

Simulator The behavior of the virtual world is controlled by a simulator. Our current im- 
plementation uses the VIVIDS simulation engine (Munro & Surmon 1997), developed 
at the USC Behavioral Technologies Laboratory.2 

Visual Interface Each human participant has a visual interface component that allows 
them to view and manipulate the virtual world. The person is connected to this 
component via several hardware devices: their view into the world is provided by a 
head-mounted display, their movements are tracked by position sensors on their head 
and hands, and they interact with the world by "touching" virtual objects using a 
data glove. (They can also pinch objects using a pinch glove or click on objects using 
a 3D mouse; these actions are all treated the same by the visual interface component, 
which supports all these alternative devices.) The visual interface component plays 
two primary roles: 

• It receives messages from the other components (primarily the simulator) describ- 
ing changes in the appearance of the world, and it outputs a three-dimensional 
graphical representation through the person's head-mounted display. 

2 VIVIDS is a descendant of the RIDES and VRIDES systems mentioned in our earlier papers. 



• It informs the other components when the person interacts with objects. 

Our current implementation uses Lockheed Martin's Vista Viewer (Stiles, McCarthy, 
& Pontecorvo 1995) as the visual interface component. 

Audio Each human participant has an audio component. This component receives mes- 
sages from the simulator describing the location and audible radius of various sounds, 
and it broadcasts appropriate sounds to the headphones on the person's head-mounted 
display. 

Speech Generation Each human participant has a speech generation component that re- 
ceives text messages from other components (primarily agents), converts the text to 
speech, and broadcasts the speech to the person's headphones. Our current imple- 
mentation uses Entropic's TrueTalk7^ text-to-speech product. 

Speech Recognition Each human participant has a speech recognition component that 
receives speech signals via the person's microphone, recognizes the speech as a path 
through its grammar, and outputs a semantic token representing the speech to the 
other components. (Steve agents do not have any natural language understanding 
capabilities, so they have no need for the recognized sentence.) Our current imple- 
mentation uses Entropic's GrapHVite™ product. 

Agent Each Steve agent runs as a separate component. The remainder of this paper 
focuses on the architecture of these agents and how they communicate with the other 
components. 

The various components do not communicate directly. Instead, all messages are sent to 
a central message dispatcher. Each component tells the dispatcher the types of messages 
in which it is interested. Then, when a message arrives, the dispatcher forwards it to all 
interested components. For example, each visual interface component registers interest in 
messages that specify changes in the appearance of the virtual world (e.g., a change in the 
color or location of an object). When the simulator sends such a message, the dispatcher 
broadcasts it to every visual interface component. This approach increases modularity, 
since one component need not know the interface to other components. It also increases 
extensibility, since new components can be added without affecting existing ones. Our 
current implementation uses Sun's ToolTalk™ as the message dispatcher. 

4    Overview of Steve's Architecture 

4.1    Perception, Cognition, and Motor Control 

Steve consists of three main modules: perception, cognition, and motor control. The per- 
ception module monitors messages from the message dispatcher and identifies events that 
are relevant to Steve, such as actions taken in the virtual world by people and agents and 
changes in the state of the virtual world. The cognition module interprets the input it re- 
ceives from the perception module, chooses appropriate goals, constructs and executes plans 
to achieve those goals, and sends out motor commands to control the agent's body. The 
motor control module decomposes these motor commands into a sequence of lower-level 
commands that are sent to other components via the message dispatcher. For example, 
upon receiving a motor command to push a button in the virtual world, the motor control 
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Figure 5:  The three main modules in Steve and the types of information they send and 
receive. 



module would send animation primitives to cause Steve's graphical finger to move to the 
button and would then send a message to the simulator to simulate the effects of the button 
being pressed. 

In our current implementation, cognition runs as one process, and perception and motor 
control run in a separate process. This split has two advantages. First, it allows each 
module to be implemented in a suitable language. The cognition module is built on top 
of Soar (Laird, Newell, & Rosenbloom 1987; Newell 1990), which is intended as a general 
architecture for cognition; most of Steve's cognitive capabilities are implemented in Soar 
production rules. In contrast, the perception and motor control modules are implemented 
in procedural languages, namely Tcl/Tk and C. The second advantage of the split is that 
cognition can run in parallel with perception and motor control. This is especially important 
when there is a high volume of message traffic arriving at the perception module, as would 
be the case for a highly dynamic world; we do not want the perceptual processing to slow 
down cognition. If the motor control module were computationally expensive, it might pay 
to run perception and motor control as separate, parallel processes as well, but this has not 
been the case so far. 

The perception, cognition, and motor control modules communicate directly, not via the 
message dispatcher. The cognition module communicates with the other two by message 
passing. It sends a message to the perception module when it is ready for an update on the 
state of the virtual world; the perception module responds with a snapshot of the state of 
the world and a set of important events that occurred since the last snapshot it sent (e.g., 
actions taken by people and agents). The cognition module also sends motor command 
messages to the motor control module. The motor control module resides in the same 
process as the perception module, so it accesses perceptual information freely via procedure 
calls and shared variables. 

4.2    Domain Knowledge 

To allow Steve to operate in a variety of domains, his architecture has a clean separation 
between domain-independent capabilities and domain-specific knowledge. The code in the 
perception, cognition, and motor control modules provides a set of general capabilities that 
are independent of any particular domain. To allow Steve to operate in a new domain, a 
course author simply specifies the appropriate domain knowledge in a declarative language. 
This declarative language was designed to be used by people with domain expertise but not 
necessarily any programming skills. Steve's general capabilities draw on the knowledge to 
teach it to students. The domain knowledge that Steve requires falls in two categories: 

Perceptual Knowledge This knowledge tells Steve about the objects in the virtual world, 
their relevant simulator attributes, and their spatial properties. It resides in the 
perception module, and will be discussed in Section 5. 

Task Knowledge This knowledge tells Steve about the procedures for accomplishing do- 
main tasks and provides text fragments so that he can talk about them. It resides in 
the cognition module, and will be discussed in Section 6. 

5    Perception 

The role of the perception module is to receive messages from other components via the 
message dispatcher, use these messages to maintain a coherent representation of the state 



of the virtual world, and to provide this information to the cognition and motor control 
modules. This section describes the representation that the perception module maintains 
and how it obtains the information, thus illustrating the types of information available to 
an agent in virtual reality. 

5.1     Representing the State of the Virtual World 

5.1.1    Representing the Simulator State 

Most information about the state of the virtual world is maintained by the simulator. The 
perception module represents the simulator state as a set of attribute-value pairs. Each 
attribute represents a state variable in the simulator, and the attribute's value represents 
the value of the variable. For example, the state of an indicator light, say lightl, might 
be represented with the attribute lightl_state with possible values on and off. This 
simple representation was chosen to allow Steve to operate with a variety of simulators; 
while some simulators allow more sophisticated object-oriented representations, nearly all 
of them support this simple attribute-value representation. 

The perception module tracks the simulator state by listening for messages from the 
simulator (via the message dispatcher). The perceptual knowledge provided to Steve by 
the course author includes a list of all relevant attributes. When Steve starts up, the 
perception module asks the simulator for the current value of each one. It also informs the 
message dispatcher that it is interested in messages describing changes in these attributes. 
The simulator broadcasts messages whenever the simulation state changes. Each message 
specifies the name of an attribute that changed and its new value. 

The perception module uses these messages to maintain a snapshot of the simulation 
state. The cognition module periodically asks for this snapshot, so the perception module 
must always have one ready to be sent. After the perception module initializes its snapshot, 
it can simply update it whenever it receives a message from the simulator, except for one 
complication: some groups of messages from the simulator represent simultaneous changes. 
For example, suppose that a light should be illuminated whenever a button is depressed. 
When the button is pressed, the simulator will send two messages: one specifying that the 
button is depressed, and another specifying that the light is on. If the perception module 
were to update the simulation snapshot after each message, the cognition module might 
ask for a snapshot before both messages have been received and processed, and hence it 
could receive an inconsistent state of the world. This situation is analogous to a database 
transaction (Korth & Silberschatz 1986); either the cognition module should see the effects 
of all the simultaneous changes, or it should not see the effects of any of them. 

To avoid this possibility, the simulator must use start and end messages to delimit 
messages representing simultaneous changes. After receiving a start message, the perception 
module stores subsequent simulator messages on a queue. When the end message arrives, the 
perception module updates the simulation snapshot by processing all the queued messages. 
This update is atomic; the cognition module cannot ask for a snapshot during the update. 
Thus, if the cognition module asks for a snapshot before the end message arrives, it sees 
none of the changes; if it asks for a snapshot after the end message arrives, it sees all of 
them. 

10 



5.1.2    Representing Spatial Properties of Objects and Agents 

In order to control Steve's body in the virtual world, Steve needs to know the spatial prop- 
erties of objects, such as their position, orientation, and spatial extent. In principle, the 
simulator could maintain such properties and provide them to the perception module as 
described in the previous section. In practice, however, this is often inconvenient. The 
simulator controls the appearance of the virtual world by instructing the visual interface 
components to load graphical models for objects and by sending messages to change prop- 
erties of the objects, such as location and color. Therefore, the simulator itself may have no 
representation for the geometric properties of the objects; these details are in the graphical 
models themselves, which are typically created by a course author using a 3D modeling tool 
and stored in files. Moreover, the simulator may not even have simple information such as 
the location of the objects. This is because graphics objects are typically organized into a 
hierarchy, where each object has its own coordinate system that is relative to its parent. 
For example, the simulator might know how to move a button in and out relative to its 
graphical parent, a console, but may not know the global (world) coordinates of the button, 
which is what Steve needs. 

Fortunately, the visual interface components can provide such information. Currently, 
the perception module queries a visual interface component for such information when it is 
needed. When the motor control module needs to interact with an object (e.g., point to it), 
it asks the perception module for its location and bounding sphere. The location specifies 
the origin of the object in Cartesian coordinates, as an (x, y, z) point. The bounding sphere 
is specified by the smallest radius around that origin that encompasses the object. 

The perception module can get these properties of other agents as well. Each agent has 
a graphical body in the virtual world. To the visual interface components, these bodies are 
no different than any other graphical object, so the perception module can query for the 
location and bounding spheres of any agent. 

In addition to keeping track of the location of agents in Cartesian coordinates, the 
perception module also keeps track of Steve's location in terms of objects. To move to 
an object, the cognition component sends a motor command to that effect. The motor 
control module converts this request into a location in Cartesian coordinates and sends 
a message to move Steve there. When Steve arrives, the perception module receives a 
message from the visual interface component, and it records his location as being at the 
desired object. The cognition module works at this level of abstraction, ignoring the actual 
Cartesian coordinates. 

To interact with objects, Steve needs other spatial information that is not provided by 
the visual interface components. Therefore, we require the course author to provide the 
following perceptual knowledge for each object: 

front vector To interact with an object, Steve must know where its front side is. When 
interacting with an object, Steve will use this knowledge to position himself in front 
of the object. The course author specifies the front of an object by a vector in the 
x-y plane that points to the front of the object from its origin. (We currently assume 
that this vector does not change dynamically.) 

grasp vector If Steve may need to grasp the object, he needs to know the appropriate 
orientation for his hand. The course author specifies this as a vector in three-space 
pointing from the object's origin in the direction in which Steve would pull the object. 

11 



(Even if Steve has no reason to pull the object, this provides an orientation with which 
to grasp it.) 

press vector If Steve may need to press the object (e.g., a button), he also needs an 
appropriate orientation for his hand when doing so. The course author specifies this 
as a vector in three-space pointing from the object's origin in the direction in which 
Steve should press the object. 

agent location When interacting with an object, Steve stands in front of it and slightly to 
the right (to avoid blocking the student's view). Using the object's location, bounding 
sphere, and front vector, Steve can choose his location. Typically, this approach works 
well, because it ensures that Steve is out of the student's way when the student is 
standing in front of the object. However, if the object has an irregular shape, the 
bounding sphere might lead Steve to stand unnecessarily far from it. Or, if there are 
other objects surrounding the desired object, Steve might need to adjust his position 
to avoid colliding with them. If Steve's default location is not appropriate, the course 
author can specify a more appropriate location, by specifying how far in front, above, 
and to the right of the object Steve should stand. (Negative numbers can be used to 
force Steve to stand behind, below, or to its left when necessary.) 

5.1.3 Representing Properties of Human Participants 

The perception module also keeps track of human participants. The visual interface com- 
ponent for a person uses the position sensor on their head-mounted display to track their 
location in Cartesian coordinates (specifically, the point between their eyes) and their line 
of sight, and the perception module can request this information when it is needed by the 
motor control module (e.g., to look at a person). 

If Steve is working with a student on a task, the perception module also keeps track of 
the student's field of view. More specifically, it keeps track of which objects in the virtual 
world lie within the student's field of view. For each object, the perception module asks the 
student's visual interface component whether that object is in the student's field of view. 
Subsequently, the visual interface component broadcasts a message when an object enters 
or leaves the student's field of view, so the perception module can maintain a snapshot of 
which objects the student can see. 

5.1.4 Representing Perceptual Knowledge for Path Planning 

Steve must navigate through the virtual world from object to object, avoiding collisions. 
There are several approaches to collision-free navigation, most of them originally developed 
by robotics researchers and later adapted for graphical worlds. Steve follows one standard 
approach; he carves the virtual world into a graph, where the nodes of the graph are places, 
and there is an edge between two nodes if Steve can move directly between the places without 
colliding into anything. As his set of places, Steve uses the objects in the virtual world, or, 
more specifically, the places he stands when interacting with each object. Currently, our 
work focuses on relatively static environments, so we assume the graph does not change 
over time. By default, there is an edge between any two nodes (places). However, if there 
is something blocking the path between two objects (e.g., a wall), the course author can 
specify that there is no direct path between the objects, effectively removing that edge from 
the graph.  (For sparse graphs or subgraphs, the author can alternatively just specify the 
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permissible edges.) The resulting adjacency graph serves as Steve's perceptual knowledge 
for navigation; using it, the motor control module can plan a path between any two nodes, 
as described in Section 7.2. 

5.2    Representing and Handling Events 

Whenever the perception module passes a snapshot of the state of the world to the cognition 
module, it also passes a list of important events that occurred since the last snapshot. If the 
cognition module could only see periodic snapshots of the state of the world, it might miss 
some events. For example, if a button were pressed and released in between snapshots, the 
cognition module would never know it had been pressed. By receiving both a snapshot of 
the world and a list of important events that occurred since the last snapshot, the cognition 
module gets a complete view of the world and its changes. 

The perception module receives and forwards to the cognition module several types of 
events: 

state changes As described earlier, the simulator sends messages whenever the state of 
the virtual world changes. The cognition module does not need most of these; they 
are summarized by the snapshot it receives. However, the perception module passes a 
select few to the cognition module, specifically those that provide feedback on Steve's 
object manipulations. These "important state changes" are specified in Steve's per- 
ceptual knowledge. 

actions on objects When a human participant interacts with an object (e.g., touches it 
with a data glove), that participant's visual interface component broadcasts a message 
specifying the name of the participant and the object they touched. The meaning 
of this interaction depends on the object. For example, touching a button causes 
the button to be pressed, while touching a valve allows the human participant to 
turn it. The result of the action is determined by the simulator; the message from 
the visual interface component only specifies the participant and object. The visual 
interface component also sends a message when the person stops touching the object. 
Agents interact with objects by sending these same messages, listing themselves as 
the participant. 

human's speech Steve receives messages from a speech recognition component when a 
human participant begins talking and when they finish. The former message simply 
specifies which person is speaking, while the latter additionally includes a semantic 
token that represents the sentence that was recognized. (If the speech recognizer did 
not understand the sentence, it returns an unknown token.) 

agent's speech Steve agents can also tell when other agents are talking. An agent sends 
out a message to the speech generation components to generate speech. Therefore, an 
agent can listen for such messages to detect when other agents begin speaking. When a 
speech generation component finishes producing the speech for its human participant, 
it sends a message to this effect. Therefore an agent can also tell when other agents 
have finished speaking. Moreover, an agent can use such messages to detect when its 
own utterance is complete. Currently, these messages do not include a semantic token, 
like their corresponding messages representing human speech. Instead, agents send 
separate messages representing the semantic content of their speech; these messages 
are loosely based on speech acts, much like KQML (Labrou & Finin 1994). 
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6    Cognition 

6.1 The Layers of Steve's Cognition 

The cognition module is organized into three main layers: 

• Domain-specific task knowledge 

• Domain-independent pedagogical capabilities 

• Soar 

Steve is built on top of the Soar architecture (Laird, Newell, & Rosenbloom 1987; Newell 
1990). Soar was designed as a general model of human cognition, so it provides a number 
of features that support the construction of intelligent agents. This paper will not focus on 
Soar, since an understanding of Steve does not require an understanding of Soar. However, 
much of Steve's design was influenced by features of the Soar architecture. 

Soar is a general cognitive architecture, but it does not provide built-in support for 
particular cognitive skills such as demonstration, explanation, and question answering. Our 
main task in building Steve was to design a set of domain-independent pedagogical capa- 
bilities such as these and layer them on top of the Soar architecture. These capabilities are 
implemented as Soar production rules, and they will be discussed later in this section. 

To teach students how to perform procedural tasks in a particular domain, Steve needs a 
representation of the tasks. A course author must provide such knowledge to Steve. Given 
appropriate task knowledge for a particular domain, Steve uses his general pedagogical 
capabilities to teach that knowledge to students. Thus, our layered approach to Steve's 
cognition module allows Steve to be used in a variety of domains; each new domain requires 
only new task knowledge, without any modification of Steve's abilities as a teacher. 

6.2 Domain Task Knowledge 

Intelligent tutoring systems typically represent procedural knowledge in one of two ways. 
Some, notably those of Anderson and his colleagues (Anderson et al. 1995), use detailed 
cognitive models built from production rules. Such systems perform domain tasks by di- 
rectly executing the rules. Other systems use a declarative representation of the knowledge, 
usually some variant of a procedural network representation (Sacerdoti 1977) specifying the 
steps in the procedure and their ordering. Such systems perform tasks by using a domain- 
independent interpreter to "execute" the procedural network (i.e., walk through the steps). 
Production rule models provide a more flexible ontology at a price: they are laborious to 
build. The labor may be justified in domains like algebra and geometry, where a tutor, once 
built, can be used for many years by many people. In contrast, procedural network rep- 
resentations are more practical for domains like operation and maintenance of equipment; 
procedures may change frequently in such domains, so it must be easy for domain experts 
or course authors to represent procedures, examine them, and change them when necessary. 
For these reasons, Steve uses a procedural network (plan) representation of domain tasks. 

Steve represents domain tasks as hierarchical plans, using a relatively standard rep- 
resentation (Russell k, Norvig 1995). First, each task consists of a set of steps, each of 
which is either a primitive action (e.g., press a button) or a composite action (i.e., itself a 
task). Composite actions give tasks a hierarchical structure. Second, there may be ordering 
constraints among the steps, each specifying that one step must precede another.  These 
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Task:  functional-test 

Steps:  press-function-test, check-alarm-light,  extinguish-alarm 

Causal Links: 
press-function-test achieves test-mode for check-alarm-light 
check-alarm-light achieves know-whether-alarm-functional for end-task 
extinguish-alarm achieves alarm-off for end-task 

Ordering constraints: 
press-function-test before check-alarm-light 
check-alarm-light before extinguish-alarm 

 Figure 6: An example task definition  

constraints define a partial order over the steps. Finally, the role of the steps in the task 
is represented by a set of causal links (McAllester & Rosenblitt 1991). Each causal link 
specifies that one step achieves a goal that is a precondition for another step (or for termi- 
nation of the task). For example, pulling out a dipstick achieves the goal of exposing the 
level indicator, which is a precondition for checking the oil level. 

Figure 6 shows an example of a task definition: the task of performing a functional test 
of one of the subsystems of a high-pressure air compressor aboard a ship. It consists of three 
steps: press-function-test, in which the compressor operator presses the test button on the 
control panel, check-alarm-light, in which the operator examines the light to make sure it 
is functional (i.e., not burned out), and extinguish-alarm, in which the operator presses the 
reset button to reset the light. In addition, every task has two dummy steps: a begin-task 
that precedes all other steps, and an end-task that follows all other steps. Several causal 
links exist among the steps. For example, press-function-test puts the device in test-mode 
(i.e., illuminates the alarm light), which is a precondition for check-alarm-light. In order for 
the task to be complete, the operator must know whether the alarm light is functional, and 
the alarm light must be off; thus, these end goals are shown as preconditions for end-task. 
Similarly, if the task depended on conditions that must be established prior to starting the 
task, these conditions would be represented as effects of begin-task. 

The plan representation only defines the structure of a task, in terms of its goals and 
steps. To complete the description, the course author must define the goals and primitive 
actions it references. Each goal is defined by an attribute-value pair. Steve can represent two 
types of goals: attributes of the virtual world, and attributes of his own mental state. For 
the former, the attribute is one that will appear in Steve's perception (e.g., lighti_state), 
and the value is its desired value (e.g., on). The goal is satisfied when that attribute- 
value pair is part of Steve's current perceptual snapshot. For the latter, the attribute is 
one that will appear in Steve's mental state. Such attributes are stored as the result of 
certain primitive actions that Steve executes, namely sensing actions (Russell & Norvig 
1995). Sensing actions are used to record the state of some attribute of the virtual world 
at a particular point during a task. For instance, in the functional-test example above, 
check-alarm-light is a sensing action that causes Steve to record the resulting state of the 
light as the value of a check_alarm_light_result attribute in mental state.  (A mental 
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State goal can optionally specify an attribute without any specific value; for example, a goal 
specified only as check_alarm_light_result is satisfied if Steve knows the result of the 
test, regardless of the particular result.) Thus, Steve can represent two types of goals: goals 
that require putting the virtual world in some desired state, which Steve can evaluate using 
perception, and goals of acquiring information, which Steve can evaluate by checking his 
mental state. 

Primitive actions require Steve to interact with the virtual world, typically via motor 
commands. To simplify the course author's job of describing the primitive actions in a task, 
we are developing a library of primitive actions that are appropriate for a virtual world; the 
course author defines each primitive action in a task as an instance of one in the library. 
The library is organized as a hierarchy of very general actions and their specializations. For 
example, one general action in the library is ManipulateObject. To define a task step as 
an instance of ManipulateObject,.the course author must specify the name of the object 
in the virtual world to be manipulated (e.g., buttonl), the name of the motor command 
that will perform the manipulation (e.g., press), and the perceptual attribute-value pair 
that will indicate that the manipulation has finished (e.g., buttonl_state depressed). 
Other actions in the library are defined as specializations of such general actions, to pro- 
vide a shorthand for course authors. For example, the library includes PressButton as a 
specialization of ManipulateObject; a course author could define the previous example as 
an instance of PressButton by merely specifying the name of the button. It is relatively 
easy to extend the action library, but it does require writing some simple Soar productions, 
so we would not expect course authors to extend it themselves. 

To complete the task knowledge, the course author must provide text fragments that 
Steve can use for natural language generation. Steve does not currently include any sophis- 
ticated capabilities for natural language generation; speech utterances are constructed by 
plugging domain-specific text fragments into text templates. Steve currently requires three 
types of text fragments: 

• He requires one fragment for each goal, in a form that would complete the sentence 
"I want...". 

• He requires two fragments for each task step. The first is a a simple imperative 
description of the step (e.g., "press the power button"). The second has the same 
form and purpose, but may include more elaboration. Steve uses the second fragment 
when a verbose description of the step is appropriate. 

• For sensing actions, he requires a fragment for each possible result (e.g., "the oil level 
is low" and "the oil level is normal"). Steve uses these fragments when describing the 
results of sensing actions to a student. 

Our representation for domain task knowledge provides the information that Steve needs 
while only requiring declarative knowledge that a course author can provide. In contrast to 
simple partial-order plans, our hierarchical plan representation provides several benefits: it 
allows the course author to chunk complex procedures into subtasks, which may be reused 
in multiple tasks, and it provides more structure to Steve's demonstrations, allowing him 
to chunk complex procedures into subtasks to aid students' comprehension. Our inclusion 
of causal links in the task representation differs from previous tutoring systems; previous 
systems that used a declarative representation of procedural knowledge, such as those of 
Burton (1982), Munro et al. (1993), and Rickel (1988)), only included steps and ordering 



constraints. As we will discuss shortly, Steve's knowledge of causal links allows him to 
automatically generate explanations and to adapt procedures to unexpected circumstances, 
making him more robust than these previous systems. 

The central purpose of Steve's task knowledge is to allow him to create a task model when 
he is required to demonstrate a task or monitor the student performing the task. He creates 
the task model by simple top-down task decomposition (Sacerdoti 1977). First, he initializes 
the task model to contain the name of the task. Next, he adds the task representation (steps, 
ordering constraints, and causal links) for that task. Steve recursively repeats this process 
for any composite step in the task representation, until the task has been fully decomposed 
into primitive actions. The result is the full hierarchical representation of the given task. 
This task model includes all the steps that might be required to complete the task, even if 
some are not necessary given the current state of the world. As described shortly, this task 
model is an important resource for Steve's plan construction. 

6.3    Steve's Decision Cycle 

The cognition module operates by continually looping through a decision cycle. In our 
current implementation, Steve executes about ten decision cycles per second. Once Steve is 
given a task and has created the task model, as described in the last section, each decision 
cycle goes through five phases:3 

1. Input phase: Get the latest perceptual information from the perception module. 

2. Goal assessment: Use the perceptual information to determine which goals of the 
current task are satisfied. This includes the end goals of the task as well as any 
intermediate goals (i.e., preconditions of task steps). 

3. Plan Construction: Based on the results of goal assessment, construct a plan to 
complete the task. 

4. Operator Selection: Select the next operator. Each operator is represented by a set 
of production rules that implement one of Steve's capabilities, such as answering a 
question or demonstrating an action. Steve's operators serve as the building blocks 
for his behavior. 

5. Operator Execution: Execute the selected operator. In most cases, this will cause the 
cognition module to output one or more motor commands. 

The general notions of decision cycle, input phase, and operator selection and execution are 
provided by Soar. The particulars of Steve's decision cycle are unique to Steve. 

During the input phase, the cognition module asks the perception module for the state 
of the virtual world. As discussed in Section 5, the cognition module receives three pieces 
of information: 

• the state of the simulator, represented as a set of attribute-value pairs (as described 
in Section 5.1.1) 

• a set of important events that occurred since the last snapshot (as described in Sec- 
tion 5.2) 

3 Actually, Soar executes phase 5 concurrently with phases 1-3 of the next decision cycle. 
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• the student's field of view, represented as the set of objects that lie within it (as 
described in Section 5.1.3) 

The remainder of this section discusses the rest of the decision cycle. First, we discuss 
goal assessment (Section 6.4) and plan construction (Section 6.5). Then, we discuss Steve's 
operators (i.e., his individual capabilities). The discussion of operators is organized around 
three primary modes: demonstrating a task to a student (Section 6.6), monitoring a stu- 
dent's performance and providing help (Section 6.7), and answering questions about past 
actions (Section 6.8). 

6.4 Goal Assessment 

In order to construct a plan to complete the current task, Steve must know which of the 
task goals are already satisfied. As described in Section 6.2, each goal in the task model 
is associated with an attribute-value pair. Therefore, Steve can assess each goal by sim- 
ply determining whether its associated attribute-value pair is satisfied given his current 
perceptual input and mental state. 

Our implementation of this process exploits Soar's truth maintenance system. When 
the course author defines a goal, an associated Soar production rule is created. This rule 
simply checks the current perceptual input or mental state, whichever is appropriate. When 
the goal becomes satisfied, the rule fires, marking the goal satisfied. As long as the goal 
is satisfied, this result will remain, without any further processing required. If the goal 
becomes unsatisfied, Soar retracts the rule, along with its result. Thus, Steve need not 
evaluate every goal on every decision cycle; each rule automatically fires or retracts when 
the status of its goal changes. 

6.5 Plan Construction 

Whether demonstrating a task to a student or monitoring the student's performance of the 
task, Steve must maintain a plan for completing the task. The plan allows Steve to identify 
the next appropriate action and, if asked, to explain the role of that action in completing 
the task. As a teacher, Steve's ability to rationalize the action is just as important as his 
ability to choose it. 

We faced conflicting design criteria when designing Steve's planner. To handle dynamic 
environments containing people and other agents, Steve must be able to adapt procedures 
to unexpected events. This argues against a rote execution of domain procedures, in favor 
of a general planning and replanning capability. Thus, we might encode domain actions 
as STRIPS operators (Russell & Norvig 1995) and use a standard partial-order planner 
(Weld 1994) to construct plans. However, we also want Steve to follow standard proce- 
dures whenever possible. Thus, we would have to augment the partial-order planner with 
substantial control knowledge to discourage unusual plans. Moreover, Steve must be able 
to construct and revise plans quickly, since he and the student are collaborating on tasks 
in real time. This can be a problem for general partial-order planners, which often require 
exponential search. Finally, we must only require task knowledge that course authors can 
easily provide, yet formulating STRIPS operators and control knowledge for a partial-order 
planner is difficult even for AI researchers. 

To satisfy these criteria, Steve uses the task model, as described in Section 6.2, to 
guide his plan construction and revision. Recall that, when given a task to demonstrate 
or monitor, Steve uses top-down task decomposition to construct a task model. The task 
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model includes all the steps that might be required to complete the task, even if some are 
not necessary given the current state of the world. Every decision cycle, after Steve gets a 
new perceptual snapshot and assesses the goals in the task model, he constructs a plan for 
completing the task. He does so by marking those elements of the task model that are still 
relevant to completing the task, as follows: 

• Every end goal of the task is relevant. 

• A primitive step in the task model is relevant if it achieves a relevant, unsatisfied goal. 

• Every precondition of a relevant step is a relevant goal. 

Thus, Steve starts by marking all the end goals as relevant (i.e., in the plan). For each 
one that is not already satisfied, he finds the step in the task model that achieves it and adds 
that step to the plan. Each step that is added may have unsatisfied preconditions, and each 
such precondition becomes a new goal that must likewise be achieved. This is exactly how 
a general partial-order planner operates. However, Steve's use of the task model eliminates 
much of the complexity that a partial-order planner must handle: 

• A partial-order planner may have multiple actions that could achieve each goal, so it 
must search through alternative plans. In contrast, Steve uses the task model as an 
oracle for choosing the appropriate action to achieve each relevant, unsatisfied goal, 
so there is no search. Thus, Steve's plan construction is predictably fast. 

• A partial-order planner must identify threats (i.e., two unordered steps that could 
interact undesirably if executed in the wrong order) and add appropriate ordering 
constraints. In contrast, Steve simply uses the ordering constraints in the task model; 
if two steps in the plan have an ordering constraint in the task model, that ordering 
constraint is added to the plan. As long as there are no unresolved threats in the task 
model, there will be no unresolved threats in the plan. 

• A partial-order planner must create steps in the plan by instantiating STRIPS op- 
erators. Therefore, it must maintain a set of binding constraints, and it may have 
to search when there are alternatives. In contrast, the steps in the task model are 
instances of actions in the action library, so they have no variables. Hence, Steve need 
not reason about binding constraints. 

This approach satisfies our design criteria. It is efficient, and it forces Steve to follow 
standard procedures as much as possible, yet it still allows him to adapt to unexpected 
events: Steve re-executes parts of his plan that get unexpectedly undone, and he skips over 
parts of the task that are unnecessary because their goals were serendipitously achieved. 
Thus, unlike videos or scripted demonstrations, Steve can adapt domain procedures to the 
state of the virtual world, and he does so efficiently. 

To execute the plan (or evaluate the student's actions), Steve must also determine 
which steps to do next. A plan step is ready for execution if it is "applicable" (i.e., all its 
preconditions are satisfied) and not "precluded" (i.e., no other plan step necessarily comes 
before it). Note that there may be a single next step, there may be multiple next steps 
(since this is a partially-ordered plan), and there may be no next steps (if no subset of the 
task model will get Steve from the current state to task completion). 

Steve's plan construction exploits Soar's truth maintenance system, making it even more 
efficient. Each of the three rules for determining relevance listed above is implemented as 
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a production rule. Depending on which goals in the task model are satisfied, instances of 
these production rules fire, marking appropriate parts of the task model as relevant (i.e., in 
the current plan). As goals become satisfied or unsatisfied, only affected instances of the 
production rules fire or retract, so only those parts of the plan that are affected by changes 
in the current state are revised. 

6.6    Demonstration 

To demonstrate a task to a student, Steve must perform the task himself, explaining what 
he is doing along the way. First, he creates the task model. Then, in each decision cycle, 
he updates his plan for completing the task and determines the next appropriate steps, as 
discussed in the previous section. After determining the next appropriate steps, he must 
choose one and demonstrate it. First, we discuss how he chooses, and then we discuss how 
he demonstrates. 

6.6.1    Choosing the Next Task Step to Demonstrate 

At any point during a task, there may be multiple steps that could be executed next. That 
is, each of these steps may be applicable (i.e., all their preconditions are satisfied) and not 
precluded (i.e., no other step in the plan must necessarily come first). From the standpoint 
of completing the task, any of these steps could be chosen. However, from the standpoint 
of communicating with the student, they may not be equally appropriate. 

Students will more easily follow the demonstration if Steve follows certain human con- 
ventions. For example, it is easier to follow a demonstration that focuses on one subtask 
at a time. If two subtasks could be interleaved arbitrarily, Steve could alternately execute 
one step from each subtask until they are both complete, but this would be unnecessarily 
confusing. As another example, suppose that Steve were demonstrating a subtask (e.g., 
configuring a console) when an unrelated, higher-priority task step suddenly became rele- 
vant (e.g., acknowledging an alarm). After acknowledging the alarm, Steve could move on 
to an unrelated subtask, but the student will expect him to resume the interrupted subtask 
(e.g., configuring the console). Researchers in computational linguistics have studied this 
problem of discourse focus for many years, and they have identified common conventions 
in types of discourse as different as rhetorical persuasion and dialogues regarding tasks. To 
ensure coherent demonstrations, Steve must obey these conventions. 

Following Grosz and Sidner (1986), we represent the discourse focus as a stack. When 
Steve begins executing a step in the plan (either primitive or composite), he pushes it onto 
the stack. Therefore, the bottom element of the stack is the main task on which the student 
and Steve are collaborating, and the topmost element is the one on which the demonstration 
is currently focused. When the step at the top of the focus stack is "complete," Steve pops 
it off the stack. A primitive action is complete when it is no longer in the current plan, 
while a composite step is complete when all its end goals are satisfied. 

Steve uses the focus stack to help choose the next step to demonstrate. When there are 
multiple plan steps ready for execution, he prefers those that maintain the current focus or 
shift to a subtask of the current focus. To operationalize this intuition, Steve first fleshes 
out the list of candidates for demonstration: 

• Any step in the current plan that is ready for execution is a candidate. Each of these 
is a primitive action, since the plan never includes any composite steps. 
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• If a step (primitive or composite) is a candidate, and its parent (composite step) in 
the task model is not somewhere on the focus stack, that parent step is a candidate. 

• The previous rule is applied recursively. That is, if a composite step is added as a 
candidate, and its parent in the task model is not somewhere on the focus stack, that 
parent is added as a candidate. 

Having enumerated the candidates, Steve chooses among them as follows: 

• Executing a parent step next is preferable to executing any of its children. Intuitively, 
this means that Steve should shift focus to the (sub)task and introduce it before he 
begins demonstrating its steps. 

• A task step whose parent is the current focus (i.e., the topmost element of the focus 
stack) is preferable to one whose parent is not. 

• If there are remaining candidates that are unordered by these preferences, Steve 
chooses one randomly. 

Let's illustrate these rules with a few examples: 

• Suppose Steve is beginning a new demonstration. Therefore, the focus stack is empty. 
Suppose the task is "start the compressor," the first subtask is "check the oil," and 
the first step of that subtask is "pull out the dipstick." Therefore, the first step of the 
plan will be "pull out the dipstick." Since that step's parent ("check the oil") is not 
on the focus stack, it is a candidate for demonstration, and is preferable to "pull out 
the dipstick." Since the parent of "check the oil," namely "start the compressor," is 
not on the focus stack, it is a candidate for demonstration, and is preferable to "check 
the oil." Thus, "start the compressor" is added to the focus stack first, and Steve 
executes it by introducing the task to the student. Next, Steve will push "check the 
oil" onto the stack and execute it by introducing this first subtask. Finally, Steve can 
push "pull out the dipstick" onto the stack and demonstrate it to the student; at this 
point, Steve has introduced the appropriate hierarchical context for performing this 
action. 

• Suppose Steve could perform two subtasks in any order, such as "check the oil" and 
"check the coolant," and he randomly chooses to check the oil first. Next, since "check 
the oil" is the current focus, he will prefer "pull out the dipstick" to "check the coolant 
level" or any of its steps, so he will push it onto the focus stack and demonstrate it. 
When the dipstick is out, it will be removed from the plan and popped off the focus 
stack, making "check the oil" the current focus again. This process will repeat for 
each step of "check the oil," until that subtask is completed and popped off the focus 
stack. 

• Suppose that Steve is performing one subtask (e.g., "configure console") when an 
unrelated, higher-priority (based on ordering constraints) task step suddenly becomes 
relevant (e.g., "acknowledge alarm"). Steve will add "acknowledge alarm" to the plan, 
and it will be the only step ready for execution (since it precludes the remaining steps 
of "configure console," so Steve will push it onto the focus stack and demonstrate it. 
When the alarm is acknowledged, it will be removed from the plan and popped off 
the focus stack, and Steve will resume "configure console." 
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6.6.2    Demonstrating a Task Step 

Once Steve chooses the next task step and pushes it onto the focus stack, he demonstrates it 
to the student. If the step is a composite step, Steve simply introduces the (sub)task, using 
its associated text fragment. If it is a primitive action, Steve demonstrates it as follows: 

1. First, Steve moves to the location of the object he needs to manipulate by sending a 
locomotion motor command, along with the object to which he wants to move. Then, 
he waits for perceptual information to indicate that he has arrived. (This typically 
takes multiple decision cycles; during this period, Steve repeatedly executes a simple 
"wait" operator.) 

2. Once Steve arrives at the desired object, he explains what he is going to do. This in- 
volves describing the step while pointing to the object to be manipulated. To describe 
the step, Steve outputs a speech specification with three pieces of information: 

• the name of the step - this will be used to retrieve the associated text fragment 

• whether Steve has already demonstrated this step - this allows him to acknowl- 
edge the repetition 

• a rhetorical relation indicating the relation in the task model between this step 
and the last one Steve demonstrated - this is used to generate an appropriate 
cue phrase 

Research has shown that human speakers often use cue phrases to indicate the rhetor- 
ical relation between one utterance and another (Grosz k Sidner 1986; Moore 1993). 
Steve currently uses cue phrases to mark several types of rhetorical relations: 

• If the last step was to introduce a composite step, and the current step is a child 
of that step, Steve says "First, ...". 

• If the previous step achieved a precondition of the current step, Steve says "Now 
we can ...". 

• If there is an ordering constraint in the task model specifying that the last step 
must precede the current step, Steve says "Next, ...". (This is used only when 
the previous cue phrase does not apply.) 

• If the current step precedes the last step in the task model, it represents an 
interruption, so Steve says "Oh, I need to ...". 

These cue phrases help to structure the demonstration, hopefully aiding the student's 
comprehension. Once Steve sends the motor command to generate the speech, he 
waits for an event from the perception module indicating that the speech is complete. 

3. When his speech is complete, he performs the task step. This is done by sending 
an appropriate motor command and waiting for evidence in his perception that the 
command was executed. For example, if he sends a motor command to press buttonl, 
he waits for his perception snapshot to include buttonl_state depressed. 

4. If appropriate, he explains the results of the action, using the appropriate text frag- 
ments. 
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Actually, this sequence of events in demonstrating a primitive action is not hardwired 
into Steve. Rather, each item in the sequence is an independent capability, and each action 
type in the action library is associated with an appropriate suite of such items. Each suite 
is essentially a finite state machine represented as Soar productions. By representing a suite 
as a finite state machine rather than a fixed sequence, Steve's demonstration of an action 
can be more reactive and adaptive. Most of the actions in our current action library use 
the sequence above, but our approach gives Steve the flexibility to demonstrate different 
types of primitive actions differently. 

Steve is sensitive to the student while demonstrating. For example, when Steve ref- 
erences an object and points to it, he checks whether the object is in the student's field 
of view. If not, he says "Look over here!" and waits until the student is looking before 
proceeding with the demonstration. 

6.6.3     Let me finish 

Steve's demonstrations can end in one of two ways. Typically, he completes the task and 
announces his completion. However, we also allow the student to request "Let me finish." 
In this case, Steve acknowledges that the student can finish the task, and he shifts to 
monitoring the student. 

6.7    Monitoring a Student 

Often, Steve's role is to monitor a student performing a task, providing assistance when 
needed. For example, Steve might first demonstrate a task and then suggest that the 
student try it. Or, as described in the previous section, the student might interrupt Steve's 
demonstration and ask to finish the task. In either case, Steve's role in monitoring a student 
is to maintain his own plan for completing the task and to use it to assess the student's 
actions and to answer questions. 

Steve's ability to adapt to unexpected events is especially useful when monitoring a 
student. Most tutoring systems require the student to follow the tutor's plan, because the 
tutor would be unable to adapt to unexpected deviations. In contrast, we want to give the 
student the flexibility to deviate from the standard procedure, make mistakes, and learn 
to recover from them. Such flexibility is a prime advantage of simulation-based training; it 
allows students to gain exposure to a wide variety of situations, and it encourages them to 
learn from their own mistakes. Steve's approach of repeatedly re-evaluating and possibly 
revising his plan supports such flexibility; he can typically provide assistance to the student 
even when the student took unexpected actions and landed in an unusual state of the world. 

Steve's approach to goal assessment and plan construction is the same for monitoring 
as it is for demonstration. The main difference between monitoring and demonstration is 
that, when monitoring, Steve allows the student to take the actions. There is one exception: 
Steve must still perform any sensing actions in the plan (e.g., checking whether a light comes 
on). Sensing actions do not cause observable changes in the virtual world; they only change 
the mental state of the student. In order to update his own plan, Steve must recognize 
when the goals of a sensing action are achieved. Therefore, whenever a sensing action is 
appropriate (i.e., the next step in Steve's plan), if the student is looking at the appropriate 
object (i.e., it is in the student's field of view), Steve performs the sensing action, records 
the result, and assumes that the student did the same. 

In the remainder of this section, we outline Steve's capabilities relevant to monitoring a 
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student. The details of these capabilities are not important; additional sophistication could, 
and will, be added to each. The important point is to show how Steve's domain knowledge, 
and his abilities to use the knowledge, allow him to assist the student in a variety of ways. 

6.7.1 Evaluating the student's actions 

Using his own assessment of the task goals, and his plan for completing the task, Steve can 
evaluate the student's actions. When the student performs an action, Steve must identify 
the steps in the task model that match the action. If none of the matching steps is an 
appropriate next step, the student's action is incorrect. In this case, Steve could provide 
feedback to the student, ranging anywhere from a simple shake of his head or look of 
disapproval to an explanation of why the action is incorrect (e.g., a precondition is not 
satisfied or the step is precluded by another step). Currently, Steve simply says "no" and 
shakes his head, but we will be experimenting with different forms of feedback soon. When 
the student's action is correct, Steve nods his head in agreement. 

6.7.2 What should I do next 

The student can always ask Steve "What should I do next?" To answer this question, Steve 
simply suggests the next step in his own plan. Unlike most tutoring systems, Steve can 
suggest appropriate steps even when the student deviates from the standard procedure, as 
mentioned earlier. This is a direct consequence of Steve's ability to adapt the procedure to 
unexpected events, in this case the student's unexpected actions. 

If there are multiple possible next steps, Steve currently enumerates them. In some cases, 
this is appropriate. However, in other cases, Steve could provide a more focused answer if 
he knew more about the student's current focus (e.g., the subtask on which the student is 
currently working). Plan recognition algorithms infer such information, so they could be 
used to maintain the discourse focus stack during monitoring. Steve's plan representation 
provides the information that most plan recognition algorithms require, but we have not 
yet added this capability. 

It is also possible that Steve does not know what to do next. This could happen if no 
subset of the task model is sufficient for completing the task. For example, the student 
may have permanently damaged the virtual equipment. In the domains where we have 
tested Steve, the simulator has not supported such irreversible actions. Nonetheless, Steve 
currently handles such situations by simply explaining that he does not know what to do 
next. In the future, we could extend Steve to explain the flaws in his plan that he does not 
know how to resolve (i.e., the preconditions he does not know how to achieve). 

6.7.3 Show me what to do 

The student may understand what to do but not how. In this case, the student can tell Steve 
"Show me what to do." Steve responds to such questions by demonstrating the next step, as 
described in the previous section. Clearly, this is a capability that traditional disembodied 
tutors cannot provide. 

If there are multiple possible next steps, Steve currently chooses one of them randomly. 
As mentioned before, plan recognition could provide information about the student's current 
focus, leading to a more informed choice. 
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Steve:   I suggest that you press the function test button. 
Student:  Why? 

Steve:  That action is relevant because we want the drain monitor in test mode. 
Student:  Why? 

Steve:  That goal  is relevant because it will allow us to check the alarm light. 
Student: Why? 

Steve:  That action is relevant because we want to know whether the alarm light 
is functional. 

 Figure 7: Example explanations generated by Steve  

6.7.4    Explaining the relevance of a step or goal 

When Steve suggests that the student perform an action, we want to allow the student to 
ask what the role of that action is in the task. Without an understanding of the rationale 
for each step in a procedure, students are forced to simply memorize the steps. In contrast, 
an understanding of the causal structure of a task should help students remember the 
procedure, adapt it when necessary, and apply their knowledge to related tasks. 

Figure 7 shows Steve's ability to rationalize suggestions. In this example, Steve is 
monitoring the student and suggests that the student press the function test button. When 
the student asks why, Steve explains the goal of that action: it will put the drain monitor 
in test mode. The example also illustrates Steve's ability to answer follow-up questions; 
when the student asks why that goal is relevant, Steve explains that it will enable another 
relevant action. The student can continue asking such follow-up questions until, ultimately, 
the initial suggestion has been related to an end goal of the task that the student was given. 

Steve generates such explanations from the causal links in the plan. Recall from Sec- 
tion 6.5 that if a step or goal is relevant (i.e., in the current plan), it is for one of three 
reasons: 

1. It is an end goal of the top-level task. 

2. It is a precondition of a relevant primitive plan step. 

3. It is a primitive plan step that achieves a relevant, unsatisfied goal. 

These connections between steps and goals are specified by the causal links in the plan. 
Thus, one advantage to having Steve maintain a plan is that he can use it to rationalize his 
suggestions. 

Although our current approach to explanation simply follows causal links one by one 
(driven by follow-up questions), our plan representation supports many other explanation 
strategies as well. For example, using a model of the student's knowledge, Steve could 
skip over causal links that the student is presumed to understand. Similarly, Steve could 
purposely skip over some causal links in order to motivate an action in terms of a more 
distant goal, forcing the student to relate the action to that goal. Also, since plans are 
represented hierarchically, Steve could provide suggestions and explanations at various levels 
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of detail based on the student's knowledge and Steve's pedagogical style. Providing a rich 
foundation for explanation was a prime motivation for choosing hierarchical plans as the 
representation for tasks. 

6.8    Episodic Memory and After-Action Review 

The previous section described Steve's ability to rationalize his suggestions. In that case, 
Steve can explain the relevance of a step or goal to completing the task by inspecting his 
current plan. In addition, we wanted Steve to be able to rationalize his own actions during 
an after-action review. When Steve completes a demonstration, he asks the student whether 
they have any questions. At this point, they can ask him to rationalize any one of his actions 
during the demonstration, and they can ask follow-up "Why?" questions as described in 
the previous section. To answer such questions, Steve cannot rely on his current plan, since 
the task is already complete and the step in question is no longer relevant. 

To support such questions, Steve employs the episodic memory capability of the Debrief 
system (Johnson 1994). Debrief includes a set of production rules that enable Soar agents to 
remember their actions and the situations in which they occurred. It uses Soar's chunking 
capability (Laird, Newell, & Rosenbloom 1987) to represent and recall situations efficiently. 
When the student asks why Steve performed an action, Steve triggers the Debrief pro- 
ductions to recall the situation in which the action was performed (i.e., Steve's perception 
snapshot and mental state). Given the recalled situation, Steve uses his standard methods 
for goal assessment and plan construction to reconstruct his plan. Using this past plan, 
Steve rationalizes his action and answers follow-up questions as described in the previous 
section. 

7    Motor Control 

7.1     Overview 

The motor control module receives motor commands from the cognition module and de- 
composes them into a sequence of lower-level commands that are sent to other components 
via the message dispatcher. Therefore, this module controls Steve's appearance and voice, 
and it allows Steve to cause changes in the virtual world. 

The motor control module accepts a variety of motor commands: 

• Speak a text string to a person, agent, or everyone. 

• Send a speech act to an agent (this allows the agent to understand associated spoken 
text). 

• Move to an object. 

• Look at an object, agent, or person. 

• Nod the head in agreement or shake it in disagreement. 

• Point at an object. 

• Move the hand to a neutral position (i.e., not manipulating or pointing at anything). 
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• Manipulate an object. For each primitive action in the cognition module's action 
library, there is a corresponding motor command that the motor control module ac- 
cepts. These are easy to add, since they are built on top of Steve's lower-level body 
control capabilities, which are discussed below. Currently, Steve can press objects 
(e.g., buttons), flip switches, turn valves, move objects short distances (i.e., distances 
that do not require Steve to move also), and pull and push objects (e.g., a dipstick). 

The motor control module maps these commands into messages that it sends to the 
message dispatcher to cause changes in the virtual world. The messages it sends fall into 
three categories: 

actions Some messages inform the simulator of Steve's actions. Steve takes actions by 
sending the same messages that would be sent by a visual interface component if 
a person took the action: he can "touch" and "release" objects. In addition, to 
manipulate objects that a person would touch and drag (e.g., a throttle), Steve sends 
a message specifying the desired endpoint of the manipulation (e.g., set the throttle at 
3000 rpm); the simulator responds to such messages by moving the object gradually 
to the specified endpoint. 

speech When the cognition module sends a motor command to generate speech, the motor 
control module sends a corresponding message to the message dispatcher, which will 
cause the appropriate speech generation components to generate the speech. When 
starting Steve, a user can configure his voice (gender, speaking rate, vocal tract size, 
and pitch), and this voice will be used whenever he speaks. 

body animation Steve supports a set of primitive body control commands. The mo- 
tor control module converts motor commands from the cognition module into some 
combination of these primitive commands. Each primitive command causes Steve to 
broadcast low-level messages to the visual interface components to move or rotate 
Steve's body parts. To create a new body for Steve, one only has to redefine these 
primitive commands, which include the following: 

• Move to an object. 

• Look at an object, agent, or person (turn the head only). 

• Look at an object, agent, or person (focus the whole body). 

• Nod the head in agreement or shake the head in disagreement. 

• Point at an object. 

• Press an object. 

• Grasp an object. 

• Move the hand to a neutral position. 

• Switch to a "speaking" facial expression. 

• Switch to a neutral (non-speaking) facial expression. 

(We are currently extending this set to include a wider variety of facial expressions.) 

The ability to completely replace Steve's body by reimplementing a small set of body 
primitives allows us to experiment with different bodies. Since Steve teaches physical tasks, 
some variant of a human form seems most appropriate. The question is how much detail is 
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needed. For simply demonstrating actions, a hand is often sufficient. Adding a head opens 
up additional channels of communication; for example, it allows the student to track Steve's 
gaze. Simple representations, such as a head and hand, are actually better than a full human 
figure in some respects. For example, a full human figure is more visually obtrusive, which 
can be a disadvantage since current head-mounted displays offer a relatively narrow field of 
view. Nonetheless, a full human figure representation offers exciting possibilities; it allows 
more realistic demonstrations of physical tasks and a richer use of gestures and other types 
of nonverbal communication. Because our architecture makes it easy to plug in different 
bodies, we can evaluate the tradeoffs among them. 

We have experimented with several bodies for Steve. At the simple end of the spectrum, 
we tried a hand alone and then a hand and head. At the complex end, we tried a full 
human figure, using the Jack software (Badler, Phillips, k Webber 1993) developed at the 
University of Pennsylvania. In the long run, Jack is an exciting prospect. However, our use 
of Jack was limited, since Jack comes with its own visual interface, and cannot run in others. 
Since his visual interface does not support our architecture for creating virtual worlds, our 
use of Jack was awkward: we had to send him movement commands, then query him for 
the resulting position and orientation of his body parts, then update our own graphical 
representation of Jack's body. Our most recent body for Steve was shown in Section 2. It 
includes the upper half of a full human figure, and the head includes movable eyes, eyelids, 
eyebrows, and lips. 

Regardless of which body we use, our approach to animation is the same: the motor 
control module sends out messages to move and rotate graphical models of Steve's body 
parts. In contrast, some other researchers, such as Stone and Lester (1996) and Andre 
and Rist (1998), create a library of animation sequences, and they dynamically string these 
together to control their agent's behavior. Our approach provides a finer granularity for 
behavior and allows Steve to interact with new virtual worlds without requiring the course 
author to build a domain-specific library of animation clips. 

The remainder of this section will discuss control of Steve's body in more detail, specif- 
ically locomotion, gaze, and hand control. 

7.2    Locomotion 

To control Steve's locomotion, the cognition module sends a motor command to move Steve 
to a specified object. To implement this command, the motor control module performs sev- 
eral steps. First, it plans a collision-free path from Steve's current location to the specified 
object. Recall from Section 5 that the perception module maintains an adjacency graph for 
the objects in the virtual world. An edge between two objects in the graph indicates that 
Steve can move from one to the other without colliding with other objects (e.g., a wall). 
Given Steve's current location (one object) and his specified destination (another object), 
the motor control module uses Dijkstra's shortest path algorithm (Cormen, Leiserson, & 
Rivest 1989) to compute a path. 

Next, the motor control module moves Steve along this path, one leg at a time. For 
each leg of the path (i.e., movement from one object to the next), it does the following: 

1. It determines the location, in Cartesian coordinates, where Steve should end up. To 
do this, it asks for a bounding sphere for the destination object from the perception 
module. Starting with the object's origin, it uses the object's radius and front vector 
to determine a point at the front, right corner of the object. Finally, it uses a default 
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offset to move slightly farther in front of the object and to its right. (If the course 
author specified an agent location offset for the object, this is used instead of the 
default.) 

2. Next, it sends a message to the visual interface components to cause Steve's body and 
gaze to focus on the destination object. 

3. After waiting half a second for Steve's shift of gaze to complete, it sends another 
message to move Steve along a path from his current location to the specified location. 

When Steve arrives at the desired location, the visual interface components send a message. 
At this point, the perception module updates Steve's location and the motor control module 
sends him on the next leg of the path. 

7.3    Gaze 

Steve shifts his gaze in many different situations. Some of these shifts are triggered ex- 
plicitly by the cognition module. Others are triggered by the motor control module in 
performing another motor command. In rare cases, gaze shifts can be triggered directly 
by the perception module (a sort of knee-jerk reaction). Gaze shifts occur in the following 
situations: 

• When moving from location to location, he looks where he is going (triggered by motor 
control module). 

• He looks at an object when manipulating it (triggered by motor control module). 

• He looks at an object before pointing at it (triggered by motor control module). 

• He looks at a person or agent when talking to them (triggered by motor control 
module). 

• If someone other than he interacts with an object, he looks at the object (triggered 
by perception module). 

• If he is waiting for someone, he looks at them (triggered by cognition module). 

• When he is monitoring a student performing a task, he looks at the them (triggered 
by cognition module). 

• When executing a sensing action, he looks at the object being sensed (triggered by 
cognition module). 

• When someone informs him of something, he looks at them and nods (triggered by 
cognition module). 

The code to control Steve's gaze has recently become more autonomous. Previously, 
each movement of the head required the perception module to query the visual interface 
components for the position of the gaze's target. After receiving this information, the 
motor control module sent a command to the visual interface components to rotate the 
head towards the target. More recently, the visual interface components accept a command 
to have Steve's gaze track an object, person, or agent; after animating the shift, the head 
is rotated automatically every frame to remain looking at the target. Moreover, the visual 
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interface components will recognize Steve's limits of motion; for example, if an object is 
moving around Steve, he will track it over his left shoulder until it moves directly behind 
him, at which point he will track it over his right shoulder. 

7.4    Hand Control 

To animate Steve's hands, we defined four possible poses for each one: resting, pointing, 
pressing, and grasping. When Steve is not doing something with his hands, they are resting 
at his sides. To manipulate or point at an object, the motor control module first gets the 
bounding sphere for the object. Next, it sends commands to animate the movement of the 
hand to the object. The pressing and grasping hands are placed at the front side of the 
object (as specified by the object's front vector), and their orientation is determined by 
the press and grasp vectors for the object, whichever is appropriate. The pointing hand 
is placed at the point on the object's bounding sphere closest to Steve's corresponding 
shoulder, oriented so that it points to the object's origin. The visual interface components 
animate the movement of the hand from its initial position to its target position, controlling 
the corresponding movements of the arms as needed. 

When Steve's hand is in the proper position, the motor control module sends a com- 
mand to tether it to the object (i.e., sustain a constant position and orientation relative 
to the object). This serves two purposes. First, it allows Steve to turn his body (e.g., to 
speak to the student) without causing an undesired change in the hand's position relative 
to the object. Second, it supports the hand animation for Steve's object manipulations. 
For example, after tethering Steve's finger to a button, the motor control module sends a 
command to the simulator to simulate the button being pressed. The simulator animates 
the movement of the button, and Steve's finger (and hence hand and arm) track the move- 
ment of the button, providing the illusion that he is pushing it. This approach works well 
when the object's movement is within the flexibility of Steve's arms and hands, which has 
been the case so far. 

8    Status and Evaluation 

Steve has been tested on a variety of Naval operating procedures. He can perform tasks on 
several of the consoles that are used to control the gas turbine engines that propel Naval 
ships, he can check and manipulate some of the valves that surround these engines, and he 
can perform a handful of procedures on the high-pressure air compressors that are part of 
these engines. We are continuing to extend his capabilities in these areas. 

We are planning a set of evaluations, both within USC and in collaboration with the 
Air Force Armstrong Laboratory. We plan to investigate experimentally which factors 
contribute to the effectiveness of agent-based instruction. In particular, we are interested 
in determining which of the following factors are critical: a) whether or not the agents can 
cohabit the virtual world with students, b) the type of embodiment (graphical realization) 
of the agent, c) whether or not the agents have pedagogical capabilities, and d) the degree 
of fidelity and believability of the agent's behavior. 

While this paper focuses on training a single student to perform a a one-person task, 
we have extended Steve to support team training. This required extensions to Steve's task 
knowledge to represent the various team members and the task steps for which they are 
responsible, extensions that allow Steve to make use of such knowledge, and extensions to 
allow Steve to generate and understand task-specific communication with teammates.  A 
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short paper by Johnson et al. (1998) provides a brief overview, and the details will appear 
in a future paper. In our most complicated team scenario to date, five team members 
must work together to handle a loss of fuel oil pressure in one of the ship's gas turbine 
engines. This task involves a number of subtasks, some of which are individual tasks while 
others involve sub-teams. All together, the task consists of about three dozen actions by 
the various team members. We have tested this scenario with two students and five agents; 
three of the agents serve as the students' team members, and two of the agents serve as 
their tutors. 

9    Related Work 

The most closely related pedagogical agent for virtual reality was developed by Billinghurst 
and his colleagues (Billinghurst & Savage 1996; Billinghurst et al. 1996). Their agent in- 
habits a three-dimensional, simulated nasal cavity, providing assistance in sinus surgery to 
medical students. The agent can demonstrate surgical steps, monitor students performing 
surgery, intervene when a student skips a step, and tell a student what to do next when 
asked. However, their agent does not have an animated form; it communicates with students 
via a disembodied voice, and it demonstrates surgical steps by moving virtual instruments 
around and controlling the student's viewpoint. Unlike Steve, their agent is also capable 
of natural language understanding and gesture recognition. Their agent represents domain 
tasks as hierarchical scripts (Schänk & Abelson 1977), which are similar to Steve's hierar- 
chical plans. However, whereas Steve continually re-evaluates his plans against the current 
state of the virtual world, their agent merely keeps track of which steps have been executed, 
so it cannot adapt to unexpected events or allow the student flexibility in performing tasks 
as Steve can. 

Lester and his colleagues are developing two animated pedagogical agents, Herman the 
Bug (Stone & Lester 1996) and Cosmo (Lester et al. 1998). These agents do not inhabit 
three-dimensional virtual worlds; they appear as two-dimensional characters floating on 
top of a two-dimensional image of a simulated world. The agents are notable for their 
approach to behavior control; they control their behavior by dynamically selecting audio 
and visual segments from a large, domain-specific library. This approach is quite labor- 
intensive, requiring considerable effort by artists and animators in building up the library, 
but it results in high quality animation. Unlike Steve, Herman and Cosmo do not interact 
with a simulator, nor do they have any abilities to plan or replan procedural tasks. 

Several people have developed animated agents that can generate presentations. The 
PPP Persona (Andre & Rist 1996; Andre, Rist, & Mueller 1998) is an animated agent 
that combines speech and gestures to describe procedures for operating physical devices. 
The agent's body is controlled by flipping between different bitmap images of the agent in 
different poses. The agent cannot interact with a simulation, and it has no pedagogical 
capabilities except the ability to describe a procedure. However, it is notable for its ability 
to plan and schedule a sequence of presentation acts (e.g., speech and gestures). Another 
agent, Presenter Jack (Noma & Badler 1997), is a full human figure that uses speech, 
gestures, and short-range locomotion to give presentations. The human figure animation 
is provided by the Jack software (Badler, Phillips, k Webber 1993). Unlike Steve, the 
presentations are not interactive; they are scripted by a human. The work is notable for its 
use of a full human figure and its analysis of how gestures and gaze are used in presentations. 

A variety of researchers have studied control of animated human figures. Several projects 
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at the University of Pennsylvania are most relevant to our work. Although none of these 
projects has focused on pedagogical or presentation capabilities, they are notable for their 
sophisticated control of animated humans. Trias et al. (1996) developed an agent that 
can play hide-and-seek with other virtual agents. The agent uses a hierarchical planner 
for some complex actions, incorporates a separate search planner for finding objects in 
the environment, and can move around in the virtual environment. Geib et al. (1994) 
developed an agent that integrates a high-level planner with a search planner for finding 
objects and another planner for manipulating objects. The ability to realistically grasp 
objects in a task-dependent manner, as described by Douville et al. (1996), would be 
an especially valuable extension to Steve. Cassell et al. (1994) developed an agent that 
integrates speech, gestures, and facial expressions in the context of a dialogue. Their agent 
uses a greater variety of nonverbal communicative acts than Steve, and these acts are also 
more tightly integrated with spoken utterances; such close coupling of verbal and nonverbal 
communication is crucial to achieving human-like conversational abilities in Steve. 

In addition to improving Steve's conversational abilities, we must improve the student's 
ability to communicate with Srteve. The most critical problem is that Steve is not capable 
of understanding natural language, so the student is limited to prespecified speech utter- 
ances. The TRAINS system (Allen et al. 1996; Ferguson, Allen, k Miller 1996) supports 
a robust spoken dialogue between a computer agent and a person working together on a 
task. However, their agent has no animated form, and does not cohabit a virtual world 
with users. Because TRAINS and Steve carry on similar types of dialogues with users, yet 
focus on different aspects of such conversations, a combination of the two systems seems 
promising. Ultimately, we must allow students to use the full range of nonverbal commu- 
nicative acts that people employ in face-to-face communication. For example, the Gandalf 
agent (Thorisson 1996; Cassell & Thorisson 1998) supports full multi-modal conversation 
between human and computer. Like other systems, Gandalf combines speech, gesture, in- 
tonation and facial expression. Unlike most other systems, Gandalf also perceives these 
communicative signals in humans; people talking with Gandalf wear a suit that tracks their 
upper body movement, an eye tracker that tracks their gaze, and a microphone that allows 
Gandalf to hear their words and intonation. Although it may be some time before tech- 
nology like Gandalf is practical, the system points the way towards an exciting future for 
human-computer interaction. 

10    Conclusion 

Steve illustrates the enormous potential in combining work in agent architectures, intelligent 
tutoring, and graphics. Steve draws on work in agent architectures by sensing the state of 
the world, assessing task goals, constructing and revising plans, and sending out motor 
commands to control the virtual world, all in a decision cycle that is executed multiple 
times per second. He draws on work in intelligent tutoring by explaining tasks, monitoring 
students, and answering questions. He draws on work in computer graphics to control his 
animated body, including locomotion, gaze, gestures, and demonstrations of actions. When 
combined, these technologies result in a new breed of computer tutor: a human-like agent 
that can interact with students in a virtual world to help them learn. 
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Abstract 
Pedagogical agents are autonomous agents that support 
human learning, by interacting with students in the 
context of interactive learning environments. They 
extend and improve upon previous work on intelligent 
tutoring systems in a number of ways. They adapt their 
behavior to the dynamic state of the learning 
environment, taking advantage of learning opportunities 
as they arise. They can support collaborative learning as 
well as individualized learning, because multiple students 
and agents can interact in a shared environment. Given a 
suitably rich user interface, pedagogical agents are 
capable of a wide spectrum of instructionally effective 
interactions with students, including multimodal dialog. 
Animated pedagogical agents can promote student 
motivation and engagement, and engender affective as 
well as cognitive responses. This paper surveys current 
research in pedagogical agents, and describes some 
current methods for investing agents with pedagogical 
capabilities. 

1. Introduction and Background 
Over the last several years there has been significant 

progress in techniques for creating autonomous agents, 
i.e., systems that are capable of performing tasks and 
achieving goals in complex, dynamic environments. 
Architectures such as RAP (Firby 1994) and Soar (Laird 
et al 1987) have been used to create agents that can 
seamlessly integrate planning and execution, adapting to 
changes in their environments. They are able to interact 
with other agents, and collaborate with them to achieve 
common goals (Müller 1996, Tambe et al 1995). Robust 
autonomous agents have been built in a variety of 
application areas, including mobile robots (Murphy and 
Hershberger 1996), softbots (Doorenbos et al 1997), and 
entertainment (Foner 1997). 

A promising application area for autonomous agents 
is education and training. The term pedagogical agent is 
used to refer to agents that are designed to support human 
learning, interacting with students in order to facilitate 
their learning. Although pedagogical agents build upon 
previous research on intelligent tutoring systems (Wenger 
1987), they bring a fresh perspective to the problem of 
facilitating on-line learning, and address issues that 
previous intelligent tutoring work largely ignored.   Peda- 

gogical agents can adapt their instructional interactions to 
the needs of the student and the current state of the 
learning environment, helping students to overcome their 
difficulties and taking advantage of learning oppor- 
tunities. They can collaborate with students and with 
other agents, integrating action with instruction; this 
contrasts with typical intelligent tutoring systems that 
only comment from the side and are only able to interact 
with one student at a time. They are able to provide 
continual feedback to students during their work. Finally, 
they can appear to the students as lifelike characters, and 
induce the same kinds of affective responses that other 
kinds of lifelike characters engender. 

The move from intelligent tutoring systems to 
pedagogical agents began about ten years ago, when 
researchers began to explore new types of interactions 
between computers and students. (Chan and Baskin 
1990) developed a simulated learning companion, which 
acts as a peer instead of a teacher. (Dillenbourg 1996) 
investigated the interaction between real students and 
computer-simulated students as a collaborative social 
process. (Chan 1996) has investigated other types of 
interactions between students and computer systems, such 
as competitors or reciprocal tutors. Current pedagogical 
agent work further develops the notion of learning- 
system-as-agent by placing learners and pedagogical 
agents in rich interactive environments and broadening 
the bandwidth of interaction between learners and agents. 
This increases the complexity of interaction between 
pedagogical agents and their environment, and hence the 
need for agent architectures that can manage this 
complexity; it also affords new possibilities for 
interacting with students in order to foster learning. 

Because pedagogical agents are autonomous agents, 
they inherit many of the same concerns that autonomous 
agents in general must address. They must exhibit robust 
behavior in rich, unpredictable environments; they must 
coordinate their behavior with that of other agents, and 
must manage their own behavior in a coherent fashion, 
arbitrating between alternative actions and responding to 
a multitude of environmental stimuli. Their environment 
includes both students and the learning environment in 
which the agents are situated. Student behavior is by 
nature unpredictable, since students may exhibit a variety 
of aptitudes, levels of proficiency, and learning styles. 

The need to support instruction imposes a combi- 
nation of requirements on pedagogical agents that other 



types of agents do not always satisfy. They need to have 
knowledge of the tasks and skills that the students are 
learning to perform, so that they can participate in the 
students' activities as needed. However, a pedagogical 
agent requires different types and representations of 
domain knowledge than do agents whose job is simply to 
perform the task. A pedagogical agent usually needs to 
be capable of offering helpful hints when needed, giving 
clarifying explanations, and answering student questions. 
In order to support such instructional interactions, a 
pedagogical agent requires a deeper understanding of the 
rationales and relationships between actions than would 
be needed simply to perform a task (Clancey 1983). 

Particularly interesting issues arise when pedagogical 
agents appear to the student as animated characters. An 
animated pedagogical agent can engage in a continuous 
dialog with the student, and emulate aspects of 
multimodal dialog between humans in instructional 
settings. Such animated agents share aspects in common 
with synthetic agents developed for entertainment 
applications (Elliott and Brzezinski 1998): they need to 
give the user an impression of being lifelike and believ- 
able, producing behavior that appears to the user as 
natural and appropriate. In the case of pedagogical 
agents, they must produce behavior that seems natural and 
appropriate for the role that the agent is playing, i.e., a 
virtual instructor or guide. As (Bates et al. 1992) have 
argued, it is not always necessary for an agent to have 
deep knowledge of a domain in order for it to generate 
behavior that is believable. To some extent the same is 
true for pedagogical agents. We frequently find it useful 
to give our agents behaviors that make them appear 
knowledgeable, attentive, helpful, concerned, etc. These 
behaviors may or may not reflect actual knowledge 
representations and mental states and attitudes in the 
agents. However, the need to support pedagogical 
interactions generally imposes a closer correspondence 
between appearance and internal state than is typical in 
agents for entertainment applications. We can create 
animations that give the impression that the agent is 
knowledgeable, but if the agent is unable to answer 
student questions and give explanations, the impression of 
knowledge will be quickly destroyed. 

This article is intended to introduce the reader to 
some of key capabilities of pedagogical agents, and 
techniques for implementing these capabilities. A full 
technical account is beyond the scope of this brief article; 
the reader is encouraged to consult the publications cited 
in the reference section for further information. 

2. Example Pedagogical Agents 
The following discussion will make frequent 

reference to the specific instances of pedagogical agents 
that have been built in research laboratories around the 

world. These systems will be used to illustrate the range 
of behaviors that these agents are capable of producing, 
and the design requirements that such agents must satisfy. 
Some of these behaviors are similar to those found in 
intelligent tutoring systems, others are quite different and 
unique. 

USC / Information Sciences Institute's Center for 
Advanced Research in Technology for Education 
(CARTE) has developed two pedagogical agents: Steve 
(Soar Training Expert for Virtual Environments) and 
Adele (Agent for Distance Learning - Light Edition). 
Steve is an advanced prototype designed to interact with 
students in networked immersive virtual environments, 
and has been applied to naval training tasks such as 
operating the engines aboard US Navy surface ships 
(Johnson et al 1998, Johnson and Rickel 1998, Rickel and 
Johnson 1998, and Rickel and Johnson 1997). Immersive 
virtual environments permit rich interactions between 
humans and agents; the students can see the agents in 
stereoscopic 3D and hear them speak, and the agents rely 
on the virtual environment's tracking hardware to monitor 
the student's position and orientation in the environment. 
Steve software is combined with 3D display and 
interaction software by Lockheed Martin, simulation 
authoring software by USC Behavioral Technologies 
Laboratory, and speech recognition and generation soft- 
ware by Entropie Research to produce a rich virtual 
environment in which students and agents can interact in 
instructional settings. Adele, in contrast, was designed to 
run desktop platforms with conventional interfaces, in 
order to broaden the applicability of pedagogical agent 
technology. Adele runs in a student's Web browser, and 
is designed to integrate into Web-based electronic 
learning materials (Johnson and Shaw 1997). Adele- 
based courses are currently being developed for 
continuing medical education in family medicine and 
graduate level geriatric dentistry, and further courses are 
planned for development both at USC and at the 
University of Oregon. 

North Carolina State University's Multimedia 
Laboratory has developed two pedagogical agents: 
Herman the Bug (Lester and Stone 1997) and Cosmo 
(Towns et al 1998). Herman was developed as part of the 
Design-A-Plant learning environment, a learning environ- 
ment that helps middle school students to understand 
botanical anatomy and physiology by designing plants for 
various hypothetical environments. Cosmo operates in 
the realm of computer networks, and helps students to 
solve problems such as how to route packets between 
network hosts so as to avoid high-traffic routes. These 
projects have investigated a number of research issues 
such as how to combine various agent behaviors in order 
to enhance the impression of believability on the part of 
the student, and how to manage mixed-initiative dialog. 
Herman the Bug has been used in large-scale empirical 



evaluations that have demonstrated the effectiveness of 
pedagogical agents in facilitating learning (Lester et al 
1997). 

Andre, Rist, and Müller at DFKI at the University of 
Saarbrücken have developed an animated persona for 
giving on-line presentations, called PPP Persona (Andre 
et al 1998). PPP Persona guides the learner through Web- 
based materials, using pointing gestures to draw the 
student's attention to elements of the Web pages, and 
providing commentary via synthesized speech. The 
underlying PPP system generates multimedia presentation 
plans for PPP Persona to present; PPP Persona then 
executes the plan adaptively, modifying it in real time 
based on user actions such as repositioning the persona on 
the screen or asking follow-on questions. 

3. Types of Interaction with 
Pedagogical Agents 

Pedagogical agents can interact with students in a 
number of different ways. The following examples 
illustrate the various types of student-agent interactions 
that have been explored to date. Screen shots and text 
descriptions have been used to give the reader a sense of 
how these interactions are manifested. However, such 
static presentations are a poor substitute for live 
interactions with these agents. Live demonstrations and 
downloadable software are available on the World Wide 
Web, both at the CARTE Web site 
(http://www.isi.edu/isd/carte/), and the DFKI PPP Web 
site (http://www.dfki.edu/~jmueller/ppp). 

When students are first introduced to a topic, it is 
often necessary to demonstrate to them how to solve 
problems and perform tasks. Pedagogical agents are well 
suited to performing such demonstrations. Figures 1 and 
2 show Steve performing such a demonstration, showing 
how to operate a High Pressure Air Compressor (HPAC) 
aboard a US Navy ship. 

Demonstrations    by    themselves    are    not    very 
instructive unless the student watching the demonstration 
understands what is being done.    Steve therefore inte- 
grates his demonstrations with explanatory commentary. 
Text descriptions of objectives and actions are generated, 
and   are   uttered   using   a   commercial   text-to-speech 
generator.     Figure  1  shows  Steve in the context of 
explaining what to do, where he says the following. 

I will now perform a functional check of the 
temperature monitor to make sure that all of the 
alarm lights are functional. First press the function 
test button. This will trip all of the alarm switches, 
so all of the alarm lights should illuminate. 

Steve then proceeds with the demonstration, as shown in 
Figure 2. As the demonstration proceeds Steve points out 
important features of the objects in the environment that 

relate to the task. For example, when the alarm lights 
illuminate, the Steve points to the lights, and says: "All of 
the alarm lights are illuminated, so they are all working 
properly." 

Figure 1. Steve pointing to a button on the HPAC 
console 

Figure 2. Steve pressing a button on the console 

Having an agent demonstrate tasks, instead of simply 
showing a student a video of the procedure, offers a 
number of advantages. The student is free to move 
around in the environment, and view the demonstration 
from various perspectives. If the demonstration is being 
performed in a dynamic environment, as in Steve's case, 
the demonstration dynamically adapts to the current state 
of the environment. This allows Steve to demonstrate the 



operation of the HP AC in different initial states and 
failure modes. Steve also adapts his demonstrations 
according to the actions of the user. Steve is gazing 
toward the user in Figure 1: this illustrates how Steve 
dynamically directs his gaze toward the student during the 
demonstration whenever he wants to attract the student's 
attention or speak to the student. Demonstrations also 
adapt to shifts in control between Steve and the student. 
At any time the student can say, "Let me finish" to Steve, 
at which point Steve lets the student complete the task 
himself while Steve monitors the student's actions. Then 
if the student encounters difficulties he can ask Steve to 
"Show me what to do," at which point Steve demonstrates 
the appropriate next action to take. Thus student 
monitoring, the ability to track and interpret the intent 
behind the student's actions, is essential in order to permit 
mixed initiative demonstrations. 

Figure 3. Adele observing a case 

Steve is alone among current pedagogical agents in 
having a well-developed demonstration capability, 
integrating demonstrations with explanations. However, 
other agents have the ability to guide a student through a 
task, much as intelligent tutoring systems do, and guiding 
is similar to demonstration in that it helps students 
unfamiliar with the task to work their way through it. For 
example, Adele has several capabilities that help to guide 
the student, which she invokes if she is operating in 
Advisor mode.1 If the student performs an action that is 
inconsistent with standard practice, she will interrupt the 
student and suggest an action to perform instead. Figures 

1 Other interaction modes include Practice mode, where 
she is available to give advice if asked but does not 
interrupt if the student, and Examination mode, where she 
observes and evaluates the student but does not offer 
assistance. 

3 and 4 illustrate this. Figure 3 shows an application of 
Adele to clinical decision making. Adele observes as the 
student performs a clinical evaluation of a patient. In this 
example, a patient has arrived complaining of a lump on 
her chest. If the student starts ordering laboratory tests 
such as chest X-rays without first completing a physical 
examination of the patient, Adele will interrupt saying 
that "Before ordering a chest X-ray it would be useful to 
listen to the condition of the lungs." 

^ Adele 

Before ordering a chest x-ray it 
would be helpful to listen to the 
condition of the lungs 

Why? Hint? Show 

{Warning: Applet Window 

Figure 4. Adele critiquing a student's actions 

Steve and Adele can both assist the student by means 
of hints. These help to guide the student if he or she is 
unclear about what to do. Hinting is usually available at 
any time in courses assisted by Steve or Adele, unless the 
student is being tested on their proficiency with the skill 
being taught. 

Expert instructors frequently use leading questions to 
make sure that students properly understand the current 
situation as they are solving a problem. Pedagogical 
agents can also employ leading questions to probe 
students' understanding. For example, in one of the 
clinical decision making courses using Adele, the students 
are presented with the case of a patient who has a lesion 
that has been slowing growing over a period of months. 
The student finds this out by asking the simulated patient 
a series of questions about her disease history. As soon as 
the student finds out that the patient's lesion has been 



growing slowly, Adele jumps in and asks the student 
identify the type of disease suggested by such a disease 
process, i.e., fibroma. 

Such use of leading questions is a special case of 
opportunistic instruction, i.e., providing instruction when 
situations arise where it is appropriate. Opportunistic 
instruction is a valuable capability for pedagogical agents, 
because it allows instruction to be delivered to students in 
the context of solving problems, so that the students can 
immediately put it to use. Herman the Bug, for example, 
makes extensive use of problem solving contexts as 
opportunities for instruction. When the student is 
working on a selecting a leaf to include in a plant, 
Herman uses this as an opportunity to provide instruction 
about leaf morphology. Another type of opportunistic 
instruction commonly provided by Adele is. providing 
students with pointers to on-line medical resources that 
are relevant to the current stage of the case work-up. For 
example, when the student selects a diagnostic procedure 
to perform on the simulated patient, Adele may point the 
student to video clips showing how the procedure is 
performed. 

All of the agents mentioned in the previous section 
are capable of generating explanations as needed. 
Whenever Steve or Adele gives a hint, the student can ask 
"Why" to find out the rationale for the hint. Steve takes 
this further by allowing a series of "Why" questions, each 
of which causes Steve to present higher-level rationales, 
until Steve runs out of rationales to give. Herman and 
Cosmo will generate unsolicited explanations if the 
student makes a mistake or seems to be having difficulty 
deciding how to proceed with the problem. Suppose, for 
example, that a student is selecting a type of leaf to use in 
a cold climate. If the student rolls over the textual 
descriptions on the screen for thirty seconds, and does not 
choose a leaf type, Herman will jump in and provide an 
explanation the relationship between cold temperature and 
leaf size, leaf thickness, and leaf skin thickness. If the 
explanation does not enable the student to make a choice, 
Herman will then provide direct advice of what action to 
perform. 

Animated pedagogical agents are increasingly 
invested with the capability of generating emotive 
responses to student actions. Emotive behaviors such as 
facial expressions and body language can help engage and 
motivate the learner, and alleviate student frustration by 
appearing to empathize with the learner. A wide 
repertoire of emotive behaviors have been built into 
Cosmo, which are combined with speech utterances and 
other types of nonverbal gestures when generating 
explanations (Towns, FitzGerald, and Lester 1998). 
Behaviors such as applause are used in conjunction with 
congratulatory speech acts; head scratching or shrugging 
are used when  Cosmo poses  a rhetorical expression. 

Adele employs emotive facial expressions, showing 
satisfaction when a student answers a question correctly, 
agitation if the a situation has arisen in the learning 
environment that requires the student's immediate 
attention (e.g., the patient is experiencing difficulty 
breathing), and displeasure if the student makes an error 
that she should have known how to avoid. 

The above examples have all described one-on-one 
interactions between a student and an agent. However, 
pedagogical agents can also be naturally applied to 
collaborative and team learning. Team instruction has 
been a particular focus of investigation for Steve. Steve's 
learning environment can be simultaneously inhabited by 
multiple students, each of whom plays the role of a 
different crew member aboard a simulated ship. Steve 
agents may be used to assist individual team members, or 
play the role of missing team members. This requires 
having each Steve agent understand how the roles of the 
various team members interact and depend upon each 
other. 

These examples do not exhaust the range of capabil- 
ities that are useful for pedagogical agents to provide. 
Other capabilities that have been found to be important 
for intelligent tutoring systems, such as student modeling 
and assessment, are potentially useful for pedagogical 
agents as well. As pedagogical agents are deployed in 
instructional settings, it is expected that these further 
intelligent tutoring capabilities will be incorporated into 
them. 

4. Architectures for Pedagogical 
Agents 

Given the range of capabilities that pedagogical 
agents are intended to provide, it is essential that an agent 
architecture be used that permits robust integration and 
reconciliation of these capabilities, and which is capable 
of generating behavior in real time. Three architectural 
approaches are taken in the agents described in this 
article: the behavior sequencing approach, the layered 
generative approach, and the state machine compilation 
approach. 

The behavior sequencing approach 
In the behavior sequencing approach, behaviors are 

assembled out of a collection of prerecorded primitive 
animations, sounds, and speech elements. The media 
primitives are organized into a behavior space, structured 
along several dimensions such as degree of exaggeration 
of movement or types of body part involved in the 
movement. Animated behaviors are created by a 
behavior sequencing engine that constructs coherent paths 
through the behavior space at real time.    Assembling 



behaviors out of prerecorded segments saves time in 
creating the animation, and can yield high-quality 
animations if the segments are created by expert anima- 
tors. The behavior sequencing engine is responsible for 
all planning decisions leading up to the creation of the 
animation sequence. 

The following example of behavior sequencing in 
Herman the Bug illustrates this process. If Herman 
intervenes in the lesson, say because the student is unable 
to decide on a leaf type, the behavior sequencing engine 
first selects a topic to provide advice about, some 
component of the plant being constructed. The engine 
then chooses how direct a hint to provide: an indirect hint 
may talk about the functional constraints that a choice 
must satisfy, whereas a direct hint proposes a specific 
choice. The level of directness then helps to determine 
the types of media to be used in the presentation: indirect 
hints tend to be realized as animated depictions of the 
relationships between environmental factars and the plant 
components, while direct hints are usually rendered as 
speech. Finally, a suitable coherent set of media elements 
with the selected media characteristics are chosen and 
sequenced. 

The behavior sequencing approach is well suited for 
applications employing 2D graphics or 3D graphics where 
the camera is fixed. The main limitation of the approach 
is that it does not provide for real-time adaptation of 
behavior. If the student performs an action in the middle 
of execution of the sequence, the behavior sequence may 
no longer be appropriate and will have to be recomputed. 

The layered generative approach 
The layered generative approach generates 

animations in real time, instead of assembling them from 
a library of multimedia elements. The architecture is 
divided into cognitive decision-making layer and a 
perceptual-motor layer responsible for monitoring the 
environment and generating the animations. Similar 
layered architectures are used in other animated agents 
such as the ALIVE system (Blumberg and Galyean 1995). 
The cognitive component receives information about the 
state of the environment from the perceptual component, 
which may filter and abstract it into a form that is usable 
by the cognitive component. The cognitive component 
continually evaluates the state of the environment, and 
makes decisions about actions that the agent should be 
performed. These are realized in the form of motor 
commands that are then sent to the perceptual-motor layer 
for execution. This layered approach is useful because it 
enables a separation of concerns, allowing agent decision 
making and persona control to be dealt with separately. 
However, it increases the amount of rendering 
computation required to create the behavior, and provides 

less scope for graphic artists to customize the agent's 
behavior. 

Steve's architecture is a particularly clear instance of 
this layered approach. Steve consists of three main 
modules: perception, cognition, and motor control. The 
perception module monitors the underlying message bus 
used in the overall Virtual Environment for Training 
system for interprocess communication. If the Steve 
agent is instructing a student, the perceptual module 
tracks the student in the virtual environment, by querying 
the human-computer interface manager controlling the 
student's display. This provides information about the 
student's location, orientation, field of view, and 
interactions between the student and objects in the virtual 
environment. The perceptual information also receives 
information from the simulator module managing the 
state of the information about state changes, and is 
notified when students or other agents speak. The 
perceptual module uses this information to construct and 
maintain a symbolic model of the state of the world. The 
cognitive component accesses this model as needed. 
When it decides to take an action, the action is transmitted 
as a motor command to the motor control module. The 
motor control module in turn moves the agent's body 
through the virtual world in response to the command. 

The following is a list of the motor commands 
supported by Steve's motor control module: 
• Speak a text string to a person, an agent, or everyone. 
• Send a speech act to an agent (e.g., Inform the agent 

of something). 
• Move to an object. 
• Look at an object, agent, or person. 
• Nod the head in agreement or shake it in 

disagreement. 
• Point at an object. 
• Move the hand to a neutral position at the side of the 

body. 
• Manipulate an object, e.g., grasp it, turn it, flip it, 

push it, pull it, etc. 
These are motor commands are translated into one or 
more primitive actions both on Steve's graphical body 
and on the objects that Steve's body is manipulating. A 
command may result in a series of actions being 
performed, e.g., if Steve chooses to move to a particular 
object it may be necessary for Steve's body to perform a 
series of motions along a path in order to arrive at the 
intended object. 

The cognitive component of Steve is organized into 
three main layers: 
• Domain-specific task knowledge 
• Domain-independent pedagogical capabilities 
• The Soar cognitive architecture (Laird et al 1987). 

Domain-specific task knowledge is provided for each 
task that Steve helps instruct. This is in the form of a plan 



schema for carrying out the task, as will be described in 
the next section. The domain-independent pedagogical 
capabilities include the general pedagogical functions 
described in Section 3, such as demonstration, student 
monitoring, and explanation. 

The choice of Soar in this context merits some further 
discussion. Soar was chosen because it has been used 
extensively to create autonomous agents that model 
human decision-making and behavior, e.g., in wargaming 
simulations (Tambe et al 1995), and in modeling human 
learning (Hill and Johnson 1993). It has been applied 
successfully to tasks that involve interacting with 
dynamic simulations. It provides support for integrating 
and arbitrating between multiple capabilities or areas of 
expertise. 

Cognition in Soar involves repeatedly applying 
operators on working memory representations. Processing 
involves repeatedly executing a decision cycle, consisting 
of the following steps. 
• Input information from the external environment into 

working memory. 
• Apply elaboration rules, which draw inferences from 

the information in working memory. Some of these 
elaboration rules may propose operators for the agent 
to perform. 

• Select an operator to apply from among the operators 
that are proposed by the elaboration rules. 

• Execute the operator. This may involve issuing 
commands to manipulate the external environment. 

The following capabilities in Soar make this decision 
cycle mechanism effective for controlling agents. A 
nonmonotonic reasoning mechanism is used to maintain 
consistency of working memory. When an elaboration 
rule fires and creates new working memory elements, 
those working memory elements remain only as long as 
the triggering conditions of the rule are true; if they 
become false, the working memory elements are 
retracted. In a dynamic environment such as Steve's, 
where the input values to Soar are continually changing, 
this mechanism helps to maintain consistency between 
working memory and the environment. Another helpful 
feature is the ability to write explicit rules for deciding 
between proposed operators, called preference rules. 
These preference rules thus make explicit the basis for 
arbitrating between alternative actions, which is helpful in 
pedagogical agents that are capable of multiple 
pedagogical actions. 

The state machine compilation approach 
The state machine compilation approach, as 

exemplified in PPP Persona, addresses the issue of real- 
time adaptation of agent behavior, while limiting the 
amount of rendering computation required.    As in the 

behavior sequencing approach, this approach composes 
behaviors out of animation primitives, consisting of 
individual animation frames and uninterruptible image 
sequences. However, unlike the behavior sequencing 
approach, the behaviors are executed by a state machine 
that can adapt at run time to student actions. This 
approach is based in part on the approach used in the 
Persona architecture developed at Microsoft Research 
(Balletal 1997). 

Presentation generation proceeds through the 
following steps. Prior to execution of the plan, the 
persona's behaviors are compiled into a state machine 
called a behavior monitor. The behavior monitor 
executes the sequences of primitive behaviors used in 
more complex behavior sequences, and combines these 
with unplanned behaviors such as idle-time actions 
(breathing or tapping a foot) and reactive behaviors (such 
has hanging suspended when the user picks up and moves 
the persona with the mouse). The behavior monitor 
defines a space of possible behaviors for the persona. 
Then for any given presentation, a multimedia presen- 
tation planner generates a set of presentation actions to be 
performed, and a schedule for performing them, with 
qualitative or quantitative temporal constraints. When 
behavior execution is initiated, the persona follows the 
preliminary schedule. The behavior monitor may execute 
additional actions. These in turn may require the schedule 
to be updated, subject to the constraints of the presen- 
tation plan. The result is behavior that is adaptive and 
interruptible, while maintaining coherence to the extent 
possible. 

5. Knowledge Representations for 
Pedagogical Agents 

All pedagogical agents require some sort of 
knowledge representation describing the subject of 
instruction. These representations should be flexible 
enough to support the wide range of pedagogical 
functions supported by these agents. They should also 
facilitate knowledge acquisition or authoring, to facilitate 
the integration of pedagogical agents into instructional 
materials. These requirements constrain the types of 
knowledge representations that may be used. 

Steve and Adele both support a wide range of 
pedagogical actions, and address the needs of knowledge 
acquisition; their representation is perhaps the most 
highly constrained. The representation of task knowledge 
used in these agents is hierarchical plans. Such hier- 
archical descriptions facilitate authoring, because it is 
usually relatively easy for most subject matter experts to 
conceptualize a task as a hierarchical set of steps and 
substeps.   Each step in Steve is implemented as a Soar 



operator that can be executed by Steve's decision-making 
mechanism. 

Steve's hierarchical plan representation is augmented 
relations between steps: causal links and ordering 
constraints. These facilitate reasoning about the relevance 
of task steps in the current situation, and explanation of 
the rationales for actions. Figure 5 shows an example 
task description in Steve, for performing a functional test 
of the console shown in Figures 1 and 2. The task has 
three steps: to press the function test button, to check the 
alarm lights for illumination, and to extinguish the alarm 
lights. Each causal link identifies the desired effect of a 
step, and a subsequent step that depends upon this effect. 
For example, pressing the function test button causes the 
console to change state to test-mode, which makes it 
possible to check the alarm lights. Ordering constraints 
define a partial ordering between steps. For example, the 
function test button must be pressed before the alarm 
lights can be checked. 

Task: functional-test 

Steps: 
press-functional-test 
check-alarm-light 
extinguish-alarm 

Causal links: 
press-function-test achieves test-mode 

for check-alarm-light 
check-alarm-light 

achieves'know-whether-alarm-functional 
for end-task 

extinguish-alarm achieves alarm-off for end-task 

Ordering constraints: 
press-function-test before check-alarm-light 
check-alarm-light before extinguish-alarm 

Figure 5. A plan for Steve 

Adele employs a similar hierarchical plan represen- 
tation, but the preconditions and effects of each step are 
made explicit, instead of being implied by the causal 
links. The reason for this is that Adele generates 
explanations differently from Steve, and therefore does 
not require the same causal link structures. When Steve 
explains a step, it is in terms of the results that that step 
achieves. Adele, in contrast, explains steps in terms of 
motivating facts about the domain. For example, if a 
student asks why a chest X-ray should be ordered the 
explanation should be about why an X-ray is important 
for this type of case. Adele's plans also differ because 
they can include multiple possible actions that the student 
might choose take, depending upon the situation. 

Team tasks are represented in these frameworks by 
assigning roles to task steps. The task thus describes what 
the team as a whole will need to do to perform the task. 
When causal links exist between steps performed by 
different roles, these define the interrelationships between 
roles. A Steve agent tutoring a student in a team setting 
can use this information to explain to the student how his 
actions affect the actions of other team members. The 
interactions between roles also govern the nonverbal 
gestures that Steve employs. If a Steve agent is waiting 
for another team member to complete a step in the task, 
he indicates this by turning and looking at the other team 
member. Gaze between team members is an effective 
indicator of the relationships between roles. 

These plan representations are simpler than the 
complex plan representations that sometimes appear in 
the planning community. This was done in part to make 
authoring easier. For example, the author has limited 
ability to define constraints on variable bindings; complex 
variable binding mechanisms are difficult for non- 
programmers to understand, and are therefore typically 
omitted from instructional authoring tools. Nevertheless 
work is required to mediate between notations familiar to 
subject matter experts and notations used by Steve and 
Adele. Multiple techniques are being employed to bridge 
this gap. Graphical diagramming tools have been 
developed that aid authors in creating hierarchical tasks 
descriptions and expressing the relationships between 
plan steps. We are also experimenting with machine 
learning techniques that allow Steve to generalize task 
descriptions automatically by experimenting on the 
simulation environment to see how changes to the plan 
affect the outcome (Angros et al 1997). 

6. Summary 
Pedagogical agents are an interesting application of 

autonomous agent technology, which is fast finding its 
way into practical applications. Adele is currently being 
readied for inclusion in several on-line courses, in a range 
of different departments at USC. Herman and Cosmo 
have been evaluated closely in large-scale empirical 
evaluations. PPP Persona has been applied to a variety of 
applications, and is available for download over the 
World Wide Web. 

Pedagogical agents bridge the gap between so-called 
believable agents and other kinds of intelligent agents. 
Their behaviors and expressions are deliberately designed 
in order to appear lifelike and responsive to the student. 
However, it is still necessary for these agents to have a 
rich representation of knowledge of the task domain, in 
order to support a wide range of pedagogical capabilities. 
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